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CHAPTER 1 

INTRODUCTION 

 Cancer is described as a disease of uncontrolled proliferation, which can be caused by a 

number of internal or external factors. The acquisition of tumors has been attributed to ten 

“hallmarks of cancer” (Hanahan and Weinberg 2000, 2011), characteristics common to cells which 

have progressed to a malignant state. These hallmarks include self-sufficiency in growth signals, 

insensitivity to anti-growth signals, evasion of apoptosis, limitless replicative potential, sustained 

angiogenesis, tissue invasion and metastasis (Hanahan and Weinberg 2000), deregulated 

metabolism, evasion of immune signals, DNA instability and inflammation (Hanahan and 

Weinberg 2011). These traits have served as the backdrop for the design of new cancer treatments, 

with the goal of targeting multiple characteristics to increase toxicity.  

The American Cancer Society estimates that approximately 1,666,000 new cases of cancer 

will be diagnosed in 2014, with an estimated 586,000 deaths. Between 2006 and 2010, cancer 

death rates decreased on average 1.6% per year, a trend that has existed for nearly twenty years. 

The almost 20% decline in cancer-related deaths may be attributed to a variety of factors, including 

earlier diagnosis and better treatment options (Siegel 2014). However, there remains no cure and 

treatment options are still extremely limited, oftentimes progressing to resistance. Therefore, the 

search for novel therapeutic targets with decreased toxicities continues. One target that has been 

proposed, and proven viable, is the ubiquitin-proteasome pathway.  

Ubiquitin-Proteasome Pathway 

The ubiquitin-proteasome pathway (UPP) is the major mechanism for protein processing 

within cells, responsible for the selective proteolytic degradation of about 90% of cellular proteins 

(Ciehanover, et al. 1978; Hershko, et al. 1980). Proteins degraded by the UPP play roles in a variety 
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of biological processes including development, differentiation, proliferation, signal transduction 

and apoptosis (Nalepa, et al. 2006). While its major role is regulation of protein turnover,  the 

proteasome also functions in several non-proteolytic processes, such as transcription-coupled 

nucleotide excision repair (Krogan, et al. 2004), transcription initiation and elongation (Baker and 

Grant 2005), and regulation of gene expression (Collins and Tansey 2006). These processes are so 

critical to normal cellular homeostasis that the 2004 Nobel Prize in Chemistry was awarded to the 

discoverers of the UPP.  

UPP-mediated protein degradation is carried out via two critical steps: 1) conjugation of 

multiple ubiquitin molecules to the protein substrate, and 2) degradation of the ubiquitin-tagged 

substrate by the 26S proteasome (Ciechanover 1998). The 26S proteasome is a large (2.5 MDa), 

multi-subunit complex, comprised of a catalytic 20S core, and one or two 19S regulatory caps 

(Figure 1) (Adams 2004b; Peters, et al. 1993), that is localized both in the cytosol and nucleus of 

cells (Hirsch and Ploegh 2000; Rivett 1998; Wojcik and DeMartino 2003). The 20S core was 

initially referred to as the conjugate-degrading factor-3 (CF-3), and the 19S regulatory cap as CF-

1 and inhibitory CF-2 (Ganoth, et al. 1988). The 20S core consists of 28 subunits that form a barrel-

like structure of four alternately stacked rings: two α rings surrounding two β rings, containing 

seven subunits each (Figure 1) (Baumeister, et al. 1998; Groll, et al. 1997; Groll, et al. 1999). The 

α subunits block direct access to the catalytic sites by allowing access only to unfolded proteins, 

while the role of the β subunits is to carry out the proteolytic activities of the proteasome, which 

are dependent on an amino-terminal nucleophilic Thr1 residue (Groll et al. 1999). There are three 

active β subunits: β1, β2 and β5, responsible for caspase or peptidyl-glutamyl peptide-hydrolyzing 

(PGPH)-like, trypsin-like and chymotrypsin (CT)-like activities, respectively (Figure 1) 

(DeMartino and Slaughter 1999; Goldberg, et al. 2002; Groll et al. 1999).  The 19S regulatory 
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cap(s) (700 kDa) can be divided into base and lid components: with the base responsible for 

recognition and unfolding of ubiquitinated protein substrates, as well as opening of the 20S core 

and transport of substrates into the core, and the lid deubiquitinating substrates prior to 

degradation. The base is comprised of six ATPase subunits, Rpt1-6, which form a hexameric ring 

(da Fonseca and Morris 2008; Hartmann-Petersen, et al. 2001; Nickell, et al. 2009), as well as two 

non-ATPase subunits Rpn-1 and -2 (Fu, et al. 1999; Rubin, et al. 1998) and the lid consists of at 

least six non-ATPases, including Rpn-10/S5a and Rpn-13/Adrm1, which contain ubiquitin 

interacting motifs (UIMs) (Finley 2009). Rpn-10/S5a has two UIMs that bind preferentially to 

poly-ubiquitinated substrates (Deveraux, et al. 1994) and Rpn-13/Adrm1 binds to the non-ATPase 

Rpn-2, promoting recruitment of deubiquitinating enzymes (DUBs) to the proteasome (Hamazaki, 

et al. 2006; Qiu, et al. 2006; Yao, et al. 2006).  Like the rest of the pathway, deubiquitination is 

highly regulated and very important for recycling of ubiquitin molecules and controlling the rate 

of degradation (Yao et al. 2006).   
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Figure 1. Structure of the 26S Proteasome. The 26S proteasome is 

made up of the 20S catalytic core and one or two 19S regulatory caps. 

The 20S core contains two β rings surrounded by two α rings. The 

catalytic activity is carried out by three β subunits: 1 (PGPH-like), 2 

(trypsin-like) and 5 (CT-like).  
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The ubiquitination step of the UPP is executed by three distinct types of enzymes, E1, E2s 

and E3s (Figure 2). The pathway is initiated by ATP-dependent E1-mediated activation of 

ubiquitin, a small 76 amino acid protein that is expressed ubiquitously throughout cells and serves 

as a tag for protein substrates destined for UPP-mediated degradation as well as various other fates, 

including membrane-trafficking, protein kinase activation, DNA repair and chromatin remodeling 

(Chen and Sun 2009). Activated ubiquitin is then transferred from E1 to one of several ubiquitin-

conjugating E2 enzymes, and then to an E3 ubiquitin-ligating enzyme, which aid in the transfer of 

active ubiquitin to lysine residues within the target protein (Figure 2) (Adams 2003; Ciechanover, 

et al. 2000). Following the conjugation of a sufficiently sized ubiquitin chain, usually four, except 

in the case of proteins like mODC and HIF-1α, which require no ubiquitination for proteasome-

mediated degradation (Hoyt and Coffino 2004; Hoyt, et al. 2003; Jariel-Encontre, et al. 2008), the 

ubiquitinated protein substrate is then recognized, deubiquitinated and translocated to the 26S 

proteasome by components of the 19S regulatory cap (Coux, et al. 1996; Nandi, et al. 2006). 

Finally, the substrate is degraded into short peptide fragments and the ubiquitin is recycled (Figure 

2) (Ciechanover 2006). This process is tightly regulated and critical to the regulation of a number 

of cellular processes, including those involved in tumorigenesis (Adams 2004a), making it a 

promising target for anti-cancer agents. 

The essential role of unbalanced protein homeostasis in development, growth and survival 

of various cancers (Smith, et al. 2007), has led to intensive investigation into the targeting of 

factors involved in the synthesis and degradation of proteins, including the UPP, as a potential 

anticancer strategy (Dou and Li 1999). Increased proteasome activity has been reported in several 

types of human cancer, including colon (Loda, et al. 1997), prostate (Li and Dou 2000) and 

leukemia (Kumatori, et al. 1990), suggesting that malignant cells are more dependent on the UPP 
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than non-malignant cells and indicating that targeting the UPP is a viable strategy in the treatment 

of cancer. Indeed, inhibition of the β5 subunit (chymotrypsin-like activity) by as little as 25% has 

been shown to be associated with cell cycle arrest and apoptosis induction (An, et al. 1998; 

LeBlanc, et al. 2002; Lopes, et al. 1997). Thus, proteasome inhibition may selectively induce 

apoptosis in cancer cells with minimal effects on healthy cells, but may also effectively sensitize 

resistant cancer cells to chemo- and/or radiotherapeutics (Orlowski and Kuhn 2008). Furthermore, 

the clinical use of proteasome inhibitors was validated by the USFDA approval of bortezomib for 

the treatment of relapsed/refractory multiple myeloma and mantle cell lymphoma (Kane, et al. 

2003). 
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Figure 2. Ubiquitin-Proteasome Pathway. Ubiquitin is first activated by an E1 ubiquitin-activating 

enzyme, is transferred to an E2 ubiquitin-conjugating enzyme, followed by transfer from the E2- to 

the E3 ubiquitin ligase-bound substrate. Finally, the poly-ubiquitinated protein target is directed to 

the 26S proteasome where components of the 19S regulatory cap deubiquitinate and unfold the target 

before it is ultimately degraded. Ub = ubiquitin. 
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Apoptosis 

One major pathway that is an established target of the UPP is the apoptosis cascade. There 

are several checkpoints for which ubiquitination-dependent degradation is responsible, including 

degradation of transcription factors and enzymes necessary for cell proliferation, such as NF-κB 

and ODC (Grassilli, et al. 1998; He, et al. 1998; Ivanov and Nikolic-Zugic 1998), cell cycle 

regulators like p27 (Gil-Gomez, et al. 1998) and pro- and anti-apoptotic proteins like caspases and 

IAPs (Figure 3) (Morizane, et al. 2005; Salvesen and Duckett 2002; Schile, et al. 2008; Vaux and 

Silke 2005; Wilson, et al. 2002; Yang, et al. 2000). The IAPs (inhibitor of apoptosis) are perhaps 

the most important of these apoptosis-related proteasome substrates. The IAP family of proteins, 

including c-IAP and XIAP, serve as endogenous inhibitors of apoptosis, whose major role is 

binding and inhibiting caspase proteins (Eckelman, et al. 2006). All members of the IAP family 

contain 1-3 BIR (baculoviral IAP repeat) domains, which are critical to their function (Liston, et 

al. 2003; Morizane et al. 2005; Vaux and Silke 2005). Importantly, many IAPs also contain RING 

finger domains, which, in addition to their E3 ligase activity, activate and recruit caspases through 

their CARD domains (Schimmer and Dalili 2005; Yang et al. 2000), ultimately leading to caspase 

degradation (Figure 3). Additionally, IAPs, in response to apoptotic stimuli, are auto-ubiquitinated 

and degraded by the proteasome (Figure 3) (Yang et al. 2000; Yang and Li 2000).  Therefore, in 

addition to targeting the UPP, targeting inhibitory factors, like XIAP, within the apoptosis cascade, 

is also a promising strategy in the treatment of human cancers. 
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Figure 3. The UPP and Apoptosis. Many apoptotic proteins are degraded by the proteasome, including 

various caspases, as well as most IAPs, like XIAP. In this case, XIAP is an E3 ligase that ubiquitinates caspase-

3 and Smac/DIABLO, as well as autoubiquitinating itself, eventually resulting in degradation of these pro-

apoptotic proteins and inhibition of apoptosis. Ub = ubiquitin; Cas-3 = caspase-3. 
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Proteasome Inhibitors 

Early Inhibitors  

Leading up to the development and approval of bortezomib, several preclinical studies 

validated the UPP as a viable druggable target. Among the early proteasome inhibitors, peptide 

aldehydes, which are analogs of proteasome substrates that inhibit the CT-like activity of the 

proteasome and include MG-132 (Cbz-leu-leu-leucinal), MG-115 (Cbz-leu-leu-norvalinal) and 

ALLN (acetyl-leu-leu-norleucinal) (Figure 4) (Lee and Goldberg 1996; Rock, et al. 1994), are 

perhaps the most widely studied. X-ray diffraction revealed that ALLN forms a hemiacetyl 

complex with the N-terminal threonine hydroxyl groups of the catalytic β subunits (Groll et al. 

1997; Lowe, et al. 1995), thus elucidating the active site for compounds in this class. PSI (Cbz-ile-

glu(O-t-Bu)-ala-leucinal; Figure 4), another peptide inhibitor, has been shown to selectively inhibit 

proteasome-mediated proteolysis without affecting isopeptidase or ATPase activities (Figueiredo-

Pereira, et al. 1994).  These inhibitors are extremely potent (MG-132 Ki = low nanomolar in 

purified proteasome; IC50 = low micromolar in cultured cells), as well as reversible by their 

removal from the system (Lee and Goldberg 1996; Rock et al. 1994). Additionally, because peptide 

aldehydes also inhibit calpains and some lysosomal cysteine proteases, some degradative 

processes originally believed to be mediated by calpains are now attributed to the proteasome. 

Another class of potent proteasome inhibitors is the vinyl sulfone peptides (Bogyo, et al. 

1997), which exert their proteasome inhibitory activity through covalent binding to the hydroxyl 

groups of the active site threonine within the catalytic β subunits. Their use in human lymphoma 

cells has been shown to result in proteasome inhibition followed by the appearance of distinct cell 

variants expressing a compensatory proteolytic system, which has not yet been clearly identified 

(Glas, et al. 1998). 
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Figure 4. Structures of Peptide Aldehyde Proteasome Inhibitors. A) MG-132 B) MG-115 C) ALLN D) PSI 
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Several naturally occurring metabolites have also been investigated as inhibitors of the 

proteasome. One example is lactacystin and its derivative clasto-lactacystin β-lactone (Figure 5), 

the active form to which it is converted in aqueous solution (Dick, et al. 1996). Lactacystin was 

first isolated from actinomycetes because of the discovery that it could promote neurite outgrowth 

and block cell division in cultured neurons (Omura, et al. 1991). Importantly, these compounds 

differ structurally and are much more specific than the peptide aldehydes, with a mode of action 

similar to that of the vinyl sulfones (Craiu, et al. 1997; Fenteany, et al. 1995).   

Other naturally occurring products that have been used as proteasome inhibitors in the 

preclinical setting include TMC-95A and argyrin A (Figure 5). TMC-95A is a cyclic triterpide, 

originally isolated from Apiospora montagnei, that specifically binds to all three catalytic β 

subunits via hydrogen bonds, causing inhibition in the low nanomolar range (Groll, et al. 2001; 

Koguchi, et al. 2000). Finally, argyrin A, a cyclic octapeptide derived from Archangium gephyra, 

has been shown to suppress tumor cell growth through inhibition of proteasomal degradation of 

the CDK inhibitor p27kip1 (Nickeleit, et al. 2008; Sasse, et al. 2002). The identification of these 

inhibitors led to the discovery and design of many other compounds specifically targeting the 

tumor proteasome, culminating in the 2003 USFDA approval of bortezomib for the treatment of 

relapsed and refractory multiple myeloma and mantle cell lymphoma (Kane et al. 2003). 
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Figure 5. Structures of Naturally Occurring Proteasome Inhibitors. A) Lactacystin B) Clasto-

lactacystin β lactone C) TMC-95 D) Argyrin A 
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Bortezomib as a Proof of Concept 

Bortezomib (Velcade®; Figure 6), a dipeptide boronic acid derivative containing 

pyrazinoic acid, phenylalanine and leucine in its structure, was first synthesized in 1995 by 

Myogenics Company and after demonstrating potent apoptosis-inducing activity in a variety of 

tumor cell lines and animal models (Adams, et al. 1999; Frankel, et al. 2000; Hideshima, et al. 

2001), it was approved by the USFDA for the treatment of relapsed or refractory multiple myeloma 

and mantle cell lymphoma (Kane et al. 2003). Bortezomib enters nearly all tissues except brain 

and adipose, and is metabolized through intracellular cytochrome p450-mediated oxidative 

deboronation (Kane et al. 2003). Furthermore, bortezomib distributes to the plasma within ten 

minutes of IV injection and has a half-life of more than 40 hours (Ryan, et al. 2006a; Ryan, et al. 

2006b). 
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Figure 6. Structure of Bortezomib. 
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Bortezomib is a slowly reversible inhibitor of the 26S proteasome, with proteasome activity 

generally recovering within 72 hours of administration (Groll et al. 1999). Bortezomib-mediated 

cell death has been shown to occur via direct inhibition of the β5-subunit (Adams and Cory 1998; 

Crawford, et al. 2006; Gross, et al. 1999; Oda, et al. 2000). Several preclinical studies have 

demonstrated the activity of bortezomib against tumor cells in vitro. A standard NCI-60 screen 

revealed that bortezomib potently inhibited cellular growth and induced apoptosis in various 

malignant cell lines, including multiple myeloma, pancreatic and squamous cell carcinomas 

(Adams 2002; Adams et al. 1999; Shah, et al. 2001; Sunwoo, et al. 2001). Importantly, bortezomib 

toxicity was evident in both chemoresistant and chemosensitive myeloma cells and a sublethal 

dose of bortezomib significantly increased the sensitivity of resistant cells to chemotherapy with 

no effect on normal hematopoietic cells (Berenson, et al. 2001; Ma, et al. 2003). Additionally, an 

in vitro study of four ovarian and three prostate cancer cell lines indicated comparable effects of 

bortezomib on cells derived from solid tumors and hematological malignancies (Frankel et al. 

2000). Finally, a series of animal studies showed that bortezomib could inhibit tumor growth and 

angiogenesis in vivo in multiple myeloma (LeBlanc et al. 2002) as well as various solid tumors, 

including prostate (Williams, et al. 2003), lung, breast (Teicher, et al. 1999), mesothelioma 

(Sartore-Bianchi, et al. 2007), and neuroblastoma (Michaelis, et al. 2006).  

Multiple targets of bortezomib have been identified in malignant cells, most notably, the 

NF-B signaling pathway. NF-B is a p50/p65 heterodimer that is constitutively inactive in the 

cytoplasm due to its binding with the inhibitory protein, IB. Upon degradation of IB, NF-B is 

activated and translocated into the nucleus where it triggers transcription of cytokines (IL-6, TNF-

α), survival factors (IAPs, Bcl-XL) and insulin-like growth factor-I (IGF-I), resulting in 

proliferation, resistance to apoptosis and drug-resistance in cancer cells (Chauhan and Anderson 
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2003). Bortezomib acts to prevent degradation of IB, which blocks activation of NF-B and 

suppresses expression of related cytokines and survival factors (Feinman, et al. 1999; Ma et al. 

2003). In contrast, a study of mice bearing human multiple myeloma cells showed that treatment 

with bortezomib was associated with NF-B activation, rather than inhibition (Hideshima, et al. 

2009), suggesting that the NF-B pathway may play a biphasic role in bortezomib-mediated tumor 

cell death.  

Still other mechanisms of bortezomib-mediated apoptosis include induction of the pro-

apoptotic protein NOXA (Nikiforov, et al. 2007; Qin, et al. 2005); induction of extrinsic and 

intrinsic apoptotic pathways via activation of caspases-8 and -9 (Mitsiades, et al. 2002; Strauss, et 

al. 2007);  inhibition of angiogenesis (Nawrocki, et al. 2002; Sunwoo et al. 2001); activation of 

the p38 mitogen-activated protein kinase (MAPK) pathway (Lioni, et al. 2008); disruption of the 

interaction between tumor cells and dendritic cells (Kukreja, et al. 2007); and induction of 

endoplasmic reticulum (ER) stress resulting in generation of reactive oxygen species (ROS) 

(Fribley and Wang 2006; Fribley, et al. 2004). Multiple targets generally play important roles in 

bortezomib-mediated apoptosis in some cancer cells, while others may be critical in other cells. 

While bortezomib has proven successful in the treatment of some hematological 

malignancies, it is much less potent in solid tumors. This, coupled with the adverse effects, 

including peripheral neuropathy and cardiac toxicities, associated with bortezomib, has prompted 

the development of a new generation of proteasome inhibitors with a more favorable therapeutic 

profile and broader spectrum of activity. In addition to the next generation inhibitors with similar 

structures, inhibitors with different structures employing various metal centers, as well as some 

targeting factors outside the catalytic core, have been designed and investigated. 

 



www.manaraa.com

18 

 

 
 

Next-Generation Proteasome Inhibitors 

Following the success of, and because of resistance associated with bortezomib, several 

second generation proteasome inhibitors have been developed. Carfilzomib (Figure 7A), an 

irreversible inhibitor of the β5 subunit, was approved by the FDA for the treatment of previously 

treated multiple myeloma in 2012. Because protein synthesis is necessary for recovery of 

proteasome activity (Radhakrishnan, et al. 2010), carfilzomib is a more potent inhibitor, with fewer 

off-target effects, than bortezomib. Additionally, carfilzomib has been shown to target the 

immunoproteasome-associated β5i subunit, which is preferentially expressed in multiple myeloma 

(Ruschak, et al. 2011).   

Marizomib (NPI-0052; Figure 7B) is another irreversible inhibitor of the proteasome that 

has been shown to induce prolonged, rapid inhibition of all three catalytic 20S subunits. A phase 

I trial of marizomib reported responses in patients with bortezomib-refractory multiple myeloma; 

with no significant treatment-associated peripheral neuropathy, thrombocytopenia or 

myelosuppression reported. Marizomib also possesses interesting tissue distribution properties and 

pharmacokinetic and pharmacodynamic profiles, indicating a possible role in patients with 

different disease characteristics, such as extramedullary spread (Moreau, et al. 2012).  

Two next-generation boronate-based reversible inhibitors, ixazomib (MLN-9708; Figure 

7C) and delanzomib (CEP-18770; Figure 7D) have also been investigated in clinical trials. 

Ixazomib is the first oral proteasome inhibitor, which not only makes the treatment more 

convenient for patients, but also produces fewer and milder adverse effects. Single-agent ixazomib 

has been shown to be effective and well-tolerated in a phase I trial of heavily pretreated 

relapsed/refractory multiple myeloma patients (Moreau et al. 2012). Delanzomib activity is 

comparable to that of bortezomib in both hematologic and solid tumor cell lines, as well as in 
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primary patient-derived multiple myeloma cells (Molineaux 2012). Finally, the irreversible 

epoxyketone-based inhibitor oprozomib (ONX-0912; Figure 7E) has been shown in preclinical 

human xenograft and mouse syngeneic studies to have oral activity equivalent to that of 

intravenous carfilzomib (Chauhan, et al. 2010). Promisingly, oral oprozomib is currently under 

investigation in early clinical trials. 
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Figure 7. Structures of Next-Generation Proteasome Inhibitors. A) Carfilzomib B) Marizomib; NPI-

0052 C) Ixazomib; MLN-9708 D) Delanzomib; CEP-18770 E) Oprozomib; ONX-0912 
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Targeting Sites Outside the Catalytic Core  

E1, E2s, and E3s: Inhibiting the ubiquitin E1 enzyme was initially disregarded due to a lack of 

specificity and related potential toxicity. However, the identification of two natural E1 inhibitors, 

panepophenanthrin and himeic acid (Table 1), has indicated that this may indeed be a viable 

strategy. Both inhibitors specifically target the formation of E1-ubiquitin thioester intermediates 

(Sekizawa, et al. 2002; Tsukamoto, et al. 2005). In addition, a synthetic pyrazone derivative, PYR-

41 (Table 1), has also been developed and shown to inhibit E1 activity, preventing protein 

degradation and cytokine-mediated activation of NF-κB (Yang, et al. 2007). Another compound, 

PYZD-4409 (Table 1) caused cell death in cultured tumor cells as well as in a leukemia mouse 

model, potentially by a mechanism similar to ER stress induced by classical proteasome inhibitors 

(Xu, et al. 2010). Additionally, inhibition of the E2 enzymes has also been explored, especially 

following the finding that functional knockdown of the E2 Ubc13 results in increased p53 activity 

(Laine, et al. 2006). Indeed, a natural compound, leucettamol A (Table 1), has been shown to 

inhibit the interaction between the E2 Ubc13 and the inactive conjugating enzyme variant Uev1A, 

which is required for efficient poly-ubiquitin chain formation (Tsukamoto, et al. 2008).  

 Perhaps one of the most widely researched strategies for targeting factors upstream of the 

proteasomal catalytic core is inhibition of E3 ubiquitin ligases, likely due to their important role 

in identifying target proteins for ubiquitination. The p53-specific RING-type E3 MDM2/HDM2, 

for example, is a popular target for inhibition, due to its tendency toward overexpression in human 

cancers (Vassilev 2007).  Indeed, nutlin-3 (Table 1), a MDM2 small molecule inhibitor, has been 

shown to suppress tumor growth in mouse xenograft models (Vassilev, et al. 2004), indicating that 

MDM2 is a promising target. Additionally, nutlin-3 in combination with bortezomib resulted in 

additive and synergistic cytotoxic effects in bortezomib-sensitive multiple myeloma and epithelial 

carcinoma cells, respectively (Ooi, et al. 2009). Some natural products, including chlorofusin and 
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(-)-hexylitaconic acid (Table 1), have also been identified as inhibitors of MDM2-p53 binding 

(Clark, et al. 2008; Duncan, et al. 2001; Nakahashi, et al. 2009; Tsukamoto, et al. 2006). Therefore, 

inhibition of upstream factors of the UPP may be a viable strategy in the treatment of human 

cancers, a strategy that is further explored in this dissertation (Chapter 5). 

19S Regulatory Subunit: Inhibition of proteasomal regulators may also be an effective strategy, 

as inhibition of these factors should hinder only certain proteasomal functions. In fact, screening 

of a purine analog-capped peptoid library identified RIP-1 (Regulatory Particle Inhibitor Peptoid-

1; Table 1) as an inhibitor of protein unfolding via the ATPase Rpt4 (Lim, et al. 2007a; Lim, et al. 

2007b). Other studies have also indicated that ubistatin A (Table 1) is able to suppress proteasome-

mediated proteolysis by blocking the recruitment of ubiquitinated proteins to the 26S proteasome 

by binding with ubiquitin chains (Verma, et al. 2004), indicating that ubiquitin-chain receptors 

may also be worthwhile drug targets. Furthermore, inhibition of deubiquitinase activity of the 19S 

regulatory particle could be another useful strategy. Indeed, a small molecular weight compound, 

b-AP15 (Table 1), has demonstrated anticancer activity through inhibition of specific 

deubiquitinases, like USP14 and UCHL5, but not POH1, in solid tumor models (D'Arcy and Linder 

2012). Thus, it is evident that factors regulating the 20S catalytic core are promising drug targets 

that should be further explored.  
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Table 1. Structures of Compounds Targeting Upstream Factors. 
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δ-Aminolevulinic Acid Dehydratase 

Shortly after the discovery of the UPP, several reports suggested the presence of a potential 

endogenous inhibitor of the proteasome (Li, et al. 1991; Speiser and Etlinger 1983), which was 

later identified as δ-aminolevulinic acid dehydratase (ALAD) (Guo, et al. 1994). The gene for 

ALAD is found on chromosome 9q32, and encodes a 330 amino acid protein (Figure 8B), of which 

three isoforms (ALAD 1-1, 1-2 and 2-2) have been reported.  

ALAD is a critical component of the heme biosynthetic pathway, responsible for catalyzing 

the second step, condensation of two δ-aminolevulinic acid (ALA) molecules into porphobilinogen 

(PBG; Figure 8A). ALAD is a cytosolic protein that functions as an octomer consisting of eight 

identical subunits, with dimerization occurring in a “hugging” conformation where the α/β barrel 

of each monomer is bound by the N-terminal branch of the adjacent monomer (Figure 8C) 

(Breinig, et al. 2003). Each ALAD monomer is bound by two or three zinc molecules, which are 

necessary for the activity of the enzyme. Additionally, many studies have shown that lead binding 

is inhibitory, and therefore, it is not surprising that the gene polymorphism is now known to cause 

defects in lead uptake and binding within the blood and tissue (Hernberg, et al. 1970; Jaffe, et al. 

2001; Kelada, et al. 2001; Thompson, et al. 1977; Tsukamoto, et al. 1979). In fact, measurement 

of ALAD activity is the current standard test for determining lead poisoning in the clinic (Berlin 

and Schaller 1974; Hernberg et al. 1970).  Although rare, ALAD deficiency is well-defined as a 

cause of acute porphyria (Jaffe and Stith 2007); its role in cancer, however, has not been fully 

characterized. In fact, very few studies have demonstrated a clear link between ALAD expression 

of activity and any form of human malignancy, with the majority correlating the two based solely 

on the role of lead poisoning in cancer (Grover, et al. 2010; Rajaraman, et al. 2005; Rajaraman, et 

al. 2006; Shaik, et al. 2009; van Bemmel, et al. 2011).  Interestingly, according to The Human 
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Protein Atlas, ALAD mRNA and protein levels are moderate to low in normal prostate tissue, and 

very low in prostate cancer tissues (Uhlen, et al. 2010), while the canSAR database provides 

evidence of differential expression in various cancers, including prostate, with the highest mRNA 

levels reported in HCT116 colon cancer and OVCAR.8 ovarian cancer cells (Halling-Brown, et 

al. 2012).  
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Figure 8. Heme Biosythesis and ALAD Structure. A) Heme Biosynthesis Pathway; ALAD 

(highlighted in yellow) catalyzes the condensation of two molecules of ALA into PBG. B) ALAD 

Protein Structure: ALAD contains three catalytic zinc-binding sites, two active sites and four 

substrate-binding sites. C) ALAD Dimerization: The N-terminal arm of one ALAD monomer wraps 

around the α/β barrel of the other. 
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Upon the discovery that ALAD is an endogenous proteasome inhibitor, ALAD was shown 

to be identical to the inhibitory CF-2 component of the proteasome (Guo et al. 1994) due to their 

common N-terminal amino acid sequences and isoelectric points, specific antibody cross-

reactivity, similar proteasome inhibitory and dehydratase activities, and identical migration on 

native and SDS-PAGE gels (Guo et al. 1994).  ALAD was also shown to possess calpain inhibitory 

ability (Murakami and Etlinger 1986), and the CF-2 inhibitory subunits were shown to exist in a 

ubiquitinated form within the proteasome complex (Li and Etlinger 1992). However, 

ubiquitination of the inhibitor/ALAD caused a 90% loss of ALAD and proteasome inhibitory 

activity (Etlinger, et al. 1993). Importantly, a recent report has demonstrated that ALAD is, in fact, 

a proteasome-interacting protein rather than a component of the proteasome (Bardag-Gorce and 

French 2011). The relationship of ALAD to the proteasome and its role in human malignancies 

must be further investigated, as the relationship could present a novel strategy for treatment of 

human cancers, as well as other diseases involving the proteasome. The data presented herein 

explore this relationship, and suggest a previously unreported post-translational proteasomal 

modification (Chapter 3). 
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Metals in Cancer Development  

Just as proteasome activity is altered in cancer, so too are levels of metals like copper and 

zinc, a discovery which has led to extensive investigation into the roles of these metals in the 

development of human cancers, as well as their potential use in anticancer therapeutics.  

Copper 

High serum and tissue levels of copper have been reported in a variety of human tumors 

including brain (Turecky, et al. 1984), breast (Kuo, et al. 2002; Rizk and Sky-Peck 1984), colon 

(Nayak, et al. 2003), lung (Diez, et al. 1989) and prostate (Habib, et al. 1980; Nayak et al. 2003) 

and in 1980, copper was shown to play an important role in angiogenesis (McAuslan and Reilly 

1980). In fact, copper, but not other metals, is a cofactor required for several angiogenic mediators 

including VEGF (Frangoulis, et al. 2007; Sen, et al. 2002), basic fibroblast growth factor (bFGF) 

(Nasulewicz, et al. 2004) and interleukins-1 and -8 (Moriguchi, et al. 2002), all of which are 

involved in the regulation of angiogenesis (Brem 1999; Brewer 2001; Lowndes and Harris 2005; 

Theophanides and Anastassopoulou 2002). Additional cell culture studies also revealed that 

copper stimulates proliferation and migration of human endothelial cells (Hu 1998). Thus, due to 

the importance of angiogenesis and copper to tumor development, the use of copper chelators has 

emerged as an interesting strategy in cancer therapeutics (Pan, et al. 2002; Yoshii, et al. 2001). 

Zinc 

Like copper, zinc levels have also been shown to be altered in cancer patients, although a 

firm relationship between cancer development and zinc has not been proven, and seems dependent 

on tumor type (Chakravarty, et al. 1986; Margalioth, et al. 1983; Schwartz, et al. 1974). For 

instance, low levels of zinc have been reported in liver, gallbladder, digestive tract, and prostate 

cancers (Costello and Franklin 2006; Zhao and Eide 1996), while both high and low levels of zinc 
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have been observed in breast cancers (Manning, et al. 1994; Taylor, et al. 2007; Zhao and Eide 

1996). Zinc is also structurally important to various proteins and enzymes such as DNA repair 

enzymes, cell signaling proteins and transcription factors (Murakami and Hirano 2008; Provinciali, 

et al. 1995), as well as playing an important role in many cellular processes, including apoptosis, 

proliferation, differentiation and defense against free radicals (Chakravarty et al. 1986; Chang, et 

al. 2006; Federico, et al. 2001; Franklin and Costello 2009; Prasad, et al. 1998).  Interestingly, the 

role of zinc in apoptosis is complex, and appears to be cell-type specific. For example, in breast, 

cervical, renal, and lung epithelial cells, as well as macrophages, zinc is anti-apoptotic, while in 

prostate, ovarian epithelial and glial cells, zinc is pro-apoptotic (Chakravarty et al. 1986; Franklin 

and Costello 2007). Not surprisingly, an association between zinc transporter levels and cancer 

progression has also been proposed (Christiansen and Rajasekaran 2006; Gupta, et al. 2005). 

Indeed, ZIP4 has been shown to increase cell proliferation through zinc transport, specifically in 

pancreatic cancer (Franklin and Costello 2009; Li, et al. 2007) and both ZIP6 and ZIP10 have roles 

in the progression and metastasis of breast cancer (Manning et al. 1994; Murakami and Hirano 

2008; Taylor et al. 2007). Conversely, ZIP1 has been suggested as a tumor suppressor of prostate 

cancer (Costello and Franklin 2006). Thus, by disrupting the distribution of zinc in tissues, altered 

levels of zinc transporters may enhance the development of various tumors, indicating the potential 

of zinc as an anticancer agent. 

Metal-Based Complexes as Proteasome Inhibitors 

 The discovery that some metal-based compounds, like cisplatin, possess potent anticancer 

properties, coupled with the importance of copper and zinc to essential biological processes like 

tumorigenesis, has led to the investigation into copper and zinc, as well as other metals like cobalt, 

gallium and gold, as metal centers in anticancer drugs. Since its discovery over four decades ago, 
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cisplatin has cured over 90% of testicular cancer cases, as well as playing a critical role in the 

treatment of various other cancers, including bladder, cervical, ovarian, lymphoma and melanoma 

(Wong and Giandomenico 1999). Extensive studies have shown that  the cytotoxicity of cisplatin 

is due to its interactions with DNA, which results in the formation of adducts that interfere with 

replication and transcription (Eckhardt 2002). Unfortunately, though cisplatin has proven 

extremely effective, it is also associated with toxicity and resistance, which has hampered its 

clinical use (Galanski, et al. 2003; Galanski, et al. 2005) and prompted the search for less-toxic 

metal-based drugs. 

Gallium Complexes 

 Although there is no known biological role for gallium, its use in therapeutic applications 

has been explored, partially due to its ability to function as an iron mimetic, which disturbs iron-

mediated processes within cells. In fact, preclinical studies have shown that gallium nitrate, a group 

IIIa metal salt, inhibits proliferation of tumor cells in vitro and in vivo, and clinical trials have 

reported on the anti-tumor activity of gallium nitrate in non-Hodgkin’s lymphoma and bladder 

cancer (Chitambar 2004; Collery, et al. 2002; Foster, et al. 1986). As a result of these positive 

results, the antitumor activities of various other gallium species, including gallium chloride 

(Collery et al. 2002), gallium maltolate (Figure 9A) (Chua, et al. 2006), tris(8-

quinolonato)gallium(III) (Figure 9B) (Collery, et al. 2000) and gallium thiosemicarbazones 

(Arion, et al. 2002), as well as gallium-containing asymmetric [NN’O] tridentate ligands (Figure 

9C) (Chen, et al. 2007b; Shakya, et al. 2006), have been investigated. Few studies have reported 

on the mechanisms of action of these gallium complexes, but the proteasome has been implicated 

as a target of the gallium-containing asymmetric [NN’O] tridentate ligands (Chen et al. 2007b; 
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Shakya et al. 2006). The proteasome-inhibitory and apoptosis-inducing abilities of a new gallium 

species is explored in this dissertation (Chapter 4). 
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Figure 9. Structures of Gallium Complexes. A) Gallium Maltolate 

B) Tris(8-quinolonato)gallium(III) C)[Ga
III

(L
R1R2
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2
]ClO
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Gold Complexes 

Although the medicinal applications of gold date back thousands of years, its rational use 

did not begin until Robert Koch found that K(Au(CN)2) could kill the tuberculosis bacteria in the 

early twentieth century. However, serious side effects have led to the use of less-toxic Au (I)-

thiolate complexes, like auranofin (Figure 10A), for the treatment of tuberculosis. Additionally, 

Jacque Forestier used these gold complexes for the treatment of rheumatoid arthritis, and they 

remained the drug of choice for many years (Forestier 1935). The success of these gold compounds 

led to investigation into the potential anticancer activity of gold compounds. Indeed, gold (I) 

complexes, including auranofin analogs and phosphine-gold (I) thiosugars, exhibited potent 

cytotoxic activity in B16 melanoma and P388 leukemia cells, but were inactive against solid tumor 

cells (Milacic, et al. 2008b; Mirabelli, et al. 1986). Gold(III) complexes have also been 

investigated, and in spite of initial doubts due to their high redox activity and poor stability, were 

found to be proteasome inhibitors with potent apoptosis-inducing abilities (Messori, et al. 2003; 

Milacic, et al. 2006; Zhang, et al. 2010). Importantly, one study reported that treatment with a 

gold(III) compound (Figure 10B) was associated with generation of free radicals, suggesting that 

induction of oxidative stress may play a role in the cytotoxicity of these gold(III) compounds 

(Figure 10B) (Zhang et al. 2010).  Further, the data presented in this dissertation expand on the use 

of gold(III) compounds as proteasome inhibitors in breast cancer (Chapter 4). 
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Figure 10.  Structures of Gold Complexes. A) Auranofin B) AUL15; a gold(III) complex C) AUL12; 

a gold(I) complex 
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Proteasome Inhibition via Metal Chelation 

The success of metal-containing drugs, coupled with the functional importance of metals 

like copper and zinc to normal cellular function, has resulted in studies exploring chelation of these 

essential metals with chelators like dithiocarbamates and hydroxyquinolones, several of which 

have been used previously in the treatment of various diseases, including AIDS, alcoholism and 

bacterial and fungal infections (Malaguarnera, et al. 2003; Reymond 1950; Schreck, et al. 1992).  

Dithiocarbamates 

 One class of medicinally important metal-chelating compounds is the dithiocarbamates, 

which includes many drugs that are currently approved for the treatment of various pathologies, 

including bacterial and fungal infections, as well as AIDS and alcoholism (Johansson 1992; 

Malaguarnera et al. 2003; Meyer 1989; Schreck et al. 1992; Vallari and Pietruszko 1982). The 

most common of this class is disulfiram (tetraethylthiuram disulfide, DSF; Antabuse; Figure 11A), 

an irreversible inhibitor of aldehyde dehydrogenase, that is able to bind with copper(II) (Cen, et 

al. 2004) and is one of only two drugs currently approved for the treatment of alcoholism 

(Johansson 1992; Meyer 1989; Vallari and Pietruszko 1982). 

 While the ability of DSF to inhibit ALDH is well-known, other potential targets include 

activation of the ROS-p38 pathway (Chiba, et al. 2014), inhibition of O6-methylguanine-DNA 

methyltransferase (MGMT) (Paranjpe, et al. 2013), blockade of transcription factor binding to the 

cyclic AMP (cAMP)-responsive element (Brar, et al. 2004), suppression of NF-κB signaling 

(Westhoff, et al. 2013), superoxide dismutase, inhibition of which results in apoptosis 

(Marikovsky, et al. 2002), as well as proteasome (Chen, et al. 2006; Li, et al. 2008) and zinc finger- 

and RING-finger-containing ubiquitin E3 ligase (Brahemi, et al. 2010; Kona, et al. 2011) 

inhibition. Importantly, while DSF is not capable of binding biological metal ions like iron(II or 
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III) or manganese(III) (Cen et al. 2004), it has been reported that DSF is able to interact with 

zinc(II) (Brar et al. 2004). Interestingly, studies have shown that copper-binding is necessary for 

the proteasome-inhibitory ability of DSF (Chen et al. 2006; Li et al. 2008), while its ability to bind 

zinc is responsible for its activity against E3 ligases (Brahemi et al. 2010; Kona et al. 2011). The 

results of preclinical studies have led to clinical trials investigating the use of DSF for the treatment 

of human cancers, validating metal-chelation as a viable strategy.   

Hydroxyquinolines 

Another class of compounds investigated for their anticancer potential is the 

hydroxyquinolines, of which clioquinol (5-chloro-7-iodo-8-hydroxyuinoline, CQ; Figure 11B) is 

a classic example. Clioquinol is a lipophilic compound that is able to form stable complexes with 

copper(II) (Di Vaira, et al. 2004) and reports have shown that CQ reduces and prevents the 

formation of amyloid plaques in Alzheimer's disease transgenic mice (Cherny, et al. 2001). This 

discovery led to two clinical trials validating the efficacy of CQ in Alzheimer's disease with no 

visible toxicity (Regland, et al. 2001; Ritchie, et al. 2003) and, ultimately, the use of CQ for the 

treatment of Alzheimer's and Huntington's diseases (Nguyen, et al. 2005; Ritchie, et al. 2004). In 

addition, prior to its use in Alzheimer's disease, CQ was used successfully to treat and 

prevent shigella and entamoeba histolytica infections (Gholz and Arons 1964). 

Clioquinol has been shown to induce cell death via various mechanisms in several cell 

lines. Histone deacetylase inhibition was observed in leukemia and myeloma cells (Cao, et al. 

2013), cytoplasmic clearance of XIAP occurred in prostate cancer cells (Cater and Haupt 2011) 

and release of tumor necrosis factor α (TNF-α) from macrophages was demonstrated in cervical 

cancer cells (Du, et al. 2008). Perhaps the most widely reported mechanism, however, is inhibition 

of the proteasome, which has been shown in breast, B-cell lymphoma lines, bladder, cervical, 
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leukemia, myeloma, ovarian, prostate and pancreatic cancer cell lines (Chen, et al. 2007a; Daniel, 

et al. 2005; Ding, et al. 2005; Mao, et al. 2009). While some reports have suggested that CQ is 

potent alone (Mao et al. 2009), even more have clearly shown that the toxicity of CQ is dependent 

on its ability to complex with copper (Barrea, et al. 2009; Chen et al. 2007a; Daniel et al. 2005; 

Ding et al. 2005; Zhai, et al. 2010). After validating that CQ complexed with copper in a 1:1 ratio, 

cells treated with a CQ-Cu complex underwent significantly more apoptosis than cells treated with 

CQ alone (Chen et al. 2007a; Daniel et al. 2005; Ding et al. 2005), and importantly, in mouse 

xenograft models, CQ alone suppressed tumor growth through inhibition of the proteasome (Chen 

et al. 2007a; Ding et al. 2005). These results not only confirmed the need for copper-binding to 

CQ, but also the ability of CQ to chelate intracellular copper within tumors, leading to apoptosis. 

Therefore, compounds like DSF and CQ are potent proteasome inhibitors that require the 

transport of copper into cancer cells, a necessity which may contribute to their selectivity and 

minimal toxicity toward normal cells. Thus, these compounds may be exploited as potential novel 

strategies for the treatment of human malignancies. Furthermore, data presented in this dissertation 

build on the previous success of these copper chelators through the investigation into another 

previously used hydroxyquinoline compound (Chapter 4). 
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Figure 11. Structures of Metal Chelators Used as Proteasome Inhibitors. 
A) Disulfiram (tetraethylthiuram disulfide; DSF) B) Clioquinol (CQ) 
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CHAPTER 2 

MATERIALS AND METHODS 

Reagents and Antibodies 

Fetal bovine serum was purchased from Aleken Biologicals (Nash, TX). DMEM/F12 and 

RPMI-1640 media, trypsin, penicillin/streptomycin and 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-

2H-tetrazolium bromide (MTT) were purchased from Life Technologies (Carlsbad, CA). Fugene-HD 

transfection reagent was from Promega (Madison, WI) and full-length C-terminal myc-DDK-

tagged ALAD and PCMV6-Entry plasmids were from OriGene Technologies (Rockville, MD). 

Mouse monoclonal anti-ALAD, anti-α2, anti-ubiquitin, anti-myc, anti-p27, anti-Bax, anti-IκBα 

and anti-GAPDH, polyclonal rabbit anti-ALAD, anti-α2, anti-caspase-3 and anti-ubiquitin and 

goat anti-actin primary antibodies, as well as normal mouse and rabbit IgG and anti-goat secondary 

antibody were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Rabbit monoclonal 

anti-cleaved caspase-3 and polyclonal rabbit anti-Acetyl-Lysine antibodies were from Cell 

Signaling Technology (Boston, MA), mouse monoclonal anti-H3 and anti-tubulin antibodies were 

from Abcam (Cambridge, MA), and polyclonal rabbit anti-S10a and anti-PARP antibodies were 

from BioMol (Farmingdale, NY). Mouse and rabbit secondary antibodies were purchased from 

Bio-Rad Laboratories (Hercules, CA). Purified ATP, ubiquitin from bovine erythrocytes and 

ALAD from bovine liver, as well as TRITC-conjugated anti-mouse secondary antibody, DAPI, 

trypan blue solution and DMSO (sterile and non-sterile) were from Sigma Aldrich (St. Louis, MO). 

Enhanced chemiluminescence reagent and autoradiography film were purchased from Denville 

Scientific (Metuchen, NJ). VectaSchield anti-fade solution was purchased from Vector 

Laboratories (Burlingame, CA). Purified human 20S proteasome was obtained from Boston 

Biochem (Cambridge, MA). Fluorogenic peptide substrates Suc-LLVY-AMC, Z-ARR-AMC, and 
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Z-LLE-AMC (for proteasomal chymotrypsin-like, trypsin-like and PGPH-like activities, 

respectively) and Ac-DEVD-AMC (for caspase-3 like activity) were purchased from Calbiochem 

(San Diego, CA). Annexin V-FITC Apoptosis Detection Kit I was purchased from BD Biosciences 

(San Jose, CA). 

Compounds 

Clioquinol, nitroxoline and trolox were purchased from Sigma-Aldrich (St. Louis, MI). 

Suberanilohydroxamic acid (SAHA) and bortezomib were from LC Laboratories (Woburn, MA) 

and MG-132 was from BIOMOL International LP (Plymouth Meeting, PA). [CoII(L1)2], [CoII(L2)], 

and [CoIII(L1)2]ClO4 (Figure 19) (Tomco, et al. 2011), [AlIII(Liodo)
2]ClO4, [CdII(Liodo)Cl]·H2O, 

[HgII(Liodo)
2]·4DMSO, [PbII(Liodo)NO3], and [SnIV(Liodo)Cl3] (Figure 21) (Tomco, et al. 2014), as 

well as GaDiIBPEN and ZnDiIBPEN (Figure 22) were synthesized by Dajena Tomco in the Verani 

Lab, Department of Chemistry, Wayne State University (Detroit, MI). AuD6 and AuD8 

(([AuIIIBr2(dtc-Sar-AA-O(t-Bu))]; AA = Gly or Aib (α-aminoisobutyric acid)) (Figure 20) 

(Nardon, et al. 2014) were synthesized in the Fregona Lab, Department of Chemical Sciences, 

University of Padova (Padova, Italy). For specific details, see corresponding publications. All 

compounds were dissolved in DMSO at stock concentrations of 100mM. 

Cell Culture and Whole-Cell Extract Preparation 

Human K562 leukemia, prostate cancer DU145, LNCaP and PC-3, MDA-MB-231 breast 

cancer and transformed prostate epithelial CRL2221 cell lines were purchased from American 

Type Culture Collection (Manassas, VA). Leukemia and prostate cells (cancer and transformed 

epithelial) were grown in RPMI-1640 and breast cancer cells in DMEM/F12, supplemented with 

10% FBS, 100 units/ml penicillin and 100 µg/ml streptomycin (Life Technologies; Carlsbad, CA). 

Cells were maintained in a humidified atmosphere containing 5% CO2 at 37°C. Whole cell extracts 
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were prepared as follows: cells were harvested, washed twice with phosphate-buffered saline and 

lysed in a whole cell lysis buffer (50 mM tris–HCl, pH 8.0, 150 mM NaCl, 0.5% NP40). Mixtures 

were vortexed for 20 minutes at 4°C, followed by centrifugation at 12,000 rpm for 12 minutes. 

Supernatants were collected as whole cell extracts and protein concentrations were determined 

using the Bio-Rad Protein Assay (Bio-Rad; Hercules, CA). 

Transfection 

Full-length C-terminal myc-DDK-tagged human ALAD in a PCMV6-Entry vector 

(OriGene Technologies; Rockville, MD) was transformed into DH5α competent E. coli, followed 

by expansion and DNA purification using the QIAGEN (Venlo, Netherlands) EndoFree Plasmid 

Maxi Prep kit. After measurement of DNA purity and concentration, genes were transiently 

transfected into parental prostate cancer cells using Fugene-HD transfection reagent (Promega; 

Madison, WI) in Opti-MEM serum-free medium (Life Technologies; Carlsbad, CA). Empty 

PCMV6-Entry vector was used as a control. 

Western Blot Analysis 

Cell lysates (40 µg) were separated by sodium dodecylsulfate–polyacrylamide gel 

electrophoresis (SDS–PAGE; 10-12%) and transferred to nitrocellulose membranes, followed by 

incubation with indicated primary and secondary antibodies and visualization using enhanced 

chemiluminescence reagent (Denville Scientific, Metuchen, NJ). 

Subcellular Fractionation 

Cells were grown and harvested as described previously. Following collection of the cell 

pellet, 500 µL 1X hypotonic buffer (20mM Tris-HCl pH 7.4, 10mM NaCl, 3mM MgCl2) was 

added and the samples were mixed by pipetting. After a 15 minute incubation on ice, 25 µL 10% 

NP-40 was added, followed by vortexing for 15 seconds. The homogenate was then centrifuged 
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for 10 minutes at 3000 rpm at 4°C. The supernatant was then transferred and saved as the cytosolic 

fraction. The pellet was resuspended in 50 µL complete cell extraction buffer (100mM Tris-HCl 

pH 7.4, 2mM Na3VO4, 100mM NaCl, 1% Triton X-100, 1mM EDTA, 10% glycerol, 1mM EGTA, 

0.1% SDS, 1mM NAF, 0.5% deoxycholate, 20mM Na4P2O7, 1mM PMSF) and incubated on ice 

for 30 minutes with vortexing at 10 minute intervals, followed by centrifugation at 14,000 g for 

30 minutes at 4°C. The supernatant was then transferred and saved as the nuclear fraction. 

Fractions were subjected to the protein concentration assay and Western blotting as previously 

described. 

Immunoprecipitation 

Cells were treated as indicated in respective figure legends and lysed as described above. 

Immunoprecipitation was carried out using the Pierce Classic IP Kit (Thermo Fisher; Rockford, 

IL). Briefly, cell lysates (500-1000 µg) were incubated with 10µg primary antibody (anti-myc, 

anti-α2 or anti-S10a) or IgG (as control) with rocking overnight at 4°C. Protein A/G beads were 

then added and the mixtures were incubated in a spin column with a 10 µm pore size with rocking 

for 4-18 hours at 4°C. Unbound proteins were separated by centrifugation at 3000 rpm for 1 minute 

and saved as the supernatant fraction. Beads were then washed three times with 1X TBS, followed 

by elution of bound proteins with low pH elution buffer and centrifugation at 3000 rpm for 1 

minute. 4X SDS sample buffer was added to supernatant (20 µl) and eluate (pulldown) samples, 

which were subjected to analysis by Western blot. 

Immunofluorescence 

PC-3 cells were plated at a density of approximately 25,000 cells per well on 6 well 

chamber slides (Fisher Scientific; Pittsburgh, PA). Cells were transfected with either empty vector 

or full length ALAD after 24 hours as described above. After 48 hours, media was removed from 
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the slide with a pipette and cells were washed with PBS. The plastic chamber was then removed 

and the slide was allowed to dry followed by three washes in ice cold 1:1 methanol:acetone to fix 

and rupture cell membranes. The slide was again allowed to dry before rehydration in a PBS wash, 

followed by blocking in 5% BSA for 45 minutes at room temperature. The slides were then washed 

once with PBS and incubated with mouse anti-ALAD primary antibody in BSA overnight at 4°C. 

The slide was then washed with PBS three times followed by incubation in TRITC-conjugated 

anti-mouse secondary antibody (Sigma Aldrich; St. Louis, MO) for 2 hours at room temperature. 

Following three PBS washes, DAPI (Sigma Aldrich; St. Louis, MO)  was added to the slide for 5 

minutes and the slide was then washed a final three times in PBS before the cover slip was applied 

with VectaShield anti-fade solution (Vector Laboratories; Burlingame, CA). Photomicrographs 

were taken with a Leica DM4000 fluorescence microscope (Leica Microsystems, Inc.; Buffalo 

Grove, IL) at 63X magnification and signals were documented with 5.0 Openlab Improvision 

software (Perkin Elmer; Waltham, MA). 

Cell-free Ubiquitination Assay  

PC-3 cell extracts (10 µg) were incubated with purified ALAD (5 µg), purified ubiquitin 

(1 µg) and purified 20S proteasome (60 ng) in 50 mM reaction buffer (500 mM Tris pH 7.4, 50 

mM MgCl2, 20 mM DTT) containing purified ATP (6 mM) for 2 hours at 37°C. Either ubiquitin, 

20S proteasome and/or ALAD were omitted for controls. The reaction was stopped by addition of 

4X SDS sample buffer and boiling at 100°C for 5 minutes. Samples were then analyzed by Western 

blot. 

Purified 20S and Cell Extract Proteasome Activity Assay 

Purified human 20S proteasome (35 ng; Boston Biochem; Cambridge, MA), or cell extract 

(10 µg ), was incubated with 10 μM of fluorogenic CT-like substrate, Suc-LLVY-AMC (AnaSpec; 
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Fremont, CA) in 100 μl assay buffer (20 mM Tris-HCl; pH 7.5), in the presence of  test compounds 

at different concentrations or the solvent control, DMSO, for 2-4 hours at 37°C. After incubation, 

production of hydrolyzed AMC groups was measured using a Wallac Victor3 multilabel plate 

reader (PerkinElmer; Waltham, MA) with an excitation filter of 355 nm and an emission filter of 

460 nm, as previously described (Chen et al. 2007b). 

Cellular Proteasome Activity Assay 

Cells were treated with various concentrations of the test compounds for 24 hours followed 

by harvesting and cell lysis as described above. Protein lysate (10 µg) was then incubated with 10 

μM fluorogenic CT-like substrate, Suc-LLVY-AMC (AnaSpec; Fremont, CA),  trypsin-like 

substrate Z-ARR-AMC, or PGPH-like substrate Z-LLE-AMC in 100 μl assay buffer (20 mM Tris-

HCl; pH 7.5) for 2-4 hours at 37°C, followed by measurement of free AMC groups using a Wallac 

Victor3 multilabel plate reader (PerkinElmer; Waltham, MA) with an excitation filter of 355 nm 

and an emission filter of 460 nm, as previously described (Tomco et al. 2011). 

Morphological Changes 

Changes in cellular morphology were observed following each treatment using a Zeiss 

Axiovert 25 microscope (Thornwood, FL USA). Rounded and detached cells were considered 

dead. 

Caspase-3 Activity Assay 

Cells were treated with various concentrations of the test compounds for 24 hours followed 

by harvesting and cell lysis as described above. Protein lysate (25 μg) was then incubated with 

40μM caspase-3 like substrate Ac-DEVD-AMC (Calbiochem; San Diego, CA) in 100 μl assay 

buffer (20 mM Tris–HCl, pH 7.5) for 18-24 hours at 37°C, followed by measurement of free AMC 
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groups using a Wallac Victor3 multilabel plate reader (PerkinElmer; Waltham, MA) with an 

excitation filter of 355 nm and an emission filter of 460 nm, as previously described 

Cell Viability Assay 

The MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used 

to measure effects of the compounds on prostate and breast cancer cell viability. PC-3 cells were 

grown to 70–80% confluency in 96-well plates, followed by addition of each compound at the 

indicated concentrations for 24 hours. MTT in PBS (1 mg/ml) was then added and incubated at 37 

°C for 3 hours to allow for complete cleavage of the formazan salt by viable cells. MTT was then 

removed and 100 µl DMSO was added, followed by colorimetric analysis using a Victor3 

multilabel plate reader (PerkinElmer; Wellesley, MA) at an absorbance of 560 nm. Absorbance 

values were plotted as the mean of triplicate experiments. 

Trypan Blue Exclusion Assay 

Suspension cells were treated in 6-well plates with various concentrations of the test 

compounds for 24 hours followed by addition of 0.1 mL 0.4% trypan blue in PBS to 1 mL of the 

cell suspension for each treatment. The trypan blue was allowed to incubate for 1-2 minutes before 

loading onto a hemocytometer. The number of blue staining cells versus total cells was counted 

under low magnification using a using a Zeiss Axiovert 25 microscope (Thornwood, FL USA). 

Blue stained cells were considered non-viable and values were recorded in quadruplicate. 

Annexin-V/FITC Apoptosis Assay 

Apoptotic indices were measured using the Annexin-V/fluorescein isothiocyanate (FITC) 

Apoptosis Detection Kit I from by BD Pharmingen. MDA-MB-231 cells were grown to about 75% 

confluence, treated with gold-based complexes (20 µM) or DMSO as a control for 16 or 24 hours 

and harvested as described above. Cell pellets were washed twice with ice cold PBS and then 
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resuspended in 1× binding buffer at a concentration of 1 X 106 cells/mL. Annexin-V/FITC and/or 

propidium iodide (PI; 5 µL each), and 5 µL Annexin-V/FITC or 5 µL PI as controls, were added 

to 100 µL cell suspension. Mixtures were gently vortexed and incubated in the dark for 15 minutes 

at RT followed by addition of 400 µL 1× binding buffer to each tube. Analysis by flow cytometry 

was performed at the Microscopy, Imaging and Cytometry Resources (MICR) Core at the 

Karmanos Cancer Institute, Wayne State University. Data are presented as density plots of 

Annexin-V (x-axis) versus PI (y-axis) staining. Unstained cells, cells stained with either PI or 

Annexin-V/FITC only, and untreated cells stained with both PI and Annexin-V were used to 

determine compensation and quadrants. The excitation wavelength was 488 nm and the detection 

wavelengths were 530±15 and 620±21 nm for Annexin-V and PI, respectively. Cells staining 

negative for both markers were considered viable and cells staining positive for both markers were 

considered to be in late apoptosis. Cells staining positive for Annexin-V only were considered in 

early apoptosis, whereas cells staining positive for PI only were considered dead by a necrotic 

pathway. Percentages of viable, apoptotic, and necrotic cells are reported in the corner of each 

quadrant. 

Human Breast Tumor Xenografts 

Seven-week-old female athymic nude mice were purchased from Harlan Laboratories 

(Indianapolis, USA) and housed in accordance with protocols approved by the Institutional 

Laboratory Animal Care and Use Committee of Wayne State University. Human breast cancer 

MDA-MB-231 cells suspended in 0.1 mL of serum-free DMEM/F12 cell growth medium were 

injected subcutaneously (s.c.) into the right flank of each mouse. When tumors reached a volume 

of around 115 mm3, the mice were randomly allocated into treatment groups (seven mice/group 

for gold compounds; four mice/group for 5NHQ) and treated five days a week by s.c. injection of 
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either vehicle [1:1:1 v/v PBS, DMSO, Cremophore/ethanol (1:4)] or medium containing 1.0 mg/kg 

AuD6 or AuD8, or 10mg/kg 5NHQ or CQ. Tumor length (L) and width (W) were measured every 

other day using a caliper, and tumor volumes were evaluated according to the standard formula (π 

⋅ L ⋅ W2)/6. Mouse weights were monitored weekly. Mice were sacrificed after 27 or 29 days 

(four/group for gold compounds, all mice for 5NHQ), or when tumors reached ∼1,800 mm3, and 

for the gold treatments, the remaining three mice/group were sacrificed after 13 days to observe 

any early effects of treatments. Tumors were collected and weighed. Gold-treated tumor tissues 

were used to measure proteasome inhibition and caspase-3 activation by enzymatic activity assays 

and by Western blot analysis. 

Immunohistochemistry 

IHC was performed using a previously reported protocol (Yang, et al. 2006). Briefly, tumor 

samples were paraffin-embedded by the Pathology Core at Karmanos Cancer Institute (Detroit, 

MI, USA). Samples were then cut and stained for p27 or TUNEL by the BioBank at William 

Beaumont Hospital (Royal Oak, MI, USA). Anti-p27 (VP-P951) was from Vector Laboratories 

(Burlingame, CA, USA) and was used at a 1:30 dilution followed by detection by DAKO. Samples 

were counterstained with DAB/Hematoxylin. TUNEL staining was performed using anti-

digoxigenin and peroxidase substrate, followed by counterstaining with methyl green. In both 

cases, brown colored cells were considered positive. 

Statistical Analysis 

Analysis of in vivo tumor growth curves following treatment with gold compounds was 

performed using the one-sided ANOVA test in Excel®; p<0.05 was considered significant. 
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CHAPTER 3 

 

THE HEME SYNTHESIS ENZYME δ-AMINOLEVULINIC ACID 

DEHYDRATASE (ALAD) AS AN ENDOGENOUS INHIBITOR OF THE 

PROTEASOME: INVLOVEMENT OF ALAD-20S PROTEASOME 

COMPLEXES IN UBIQUITINATION AND ACETYLATION OF 

PROTEASOMAL α2 SUBUNITS 

 
The ubiquitin-proteasome pathway has gained attention as a potential chemotherapeutic 

target, owing to its importance in the maintenance of protein homeostasis and the observation that 

cancer cells are more dependent on this pathway than normal cells. Additionally, inhibition of 

histone deacetylases (HDACs) by their inhibitors like Vorinostat (SAHA) has also proven a useful 

strategy in cancer therapy and the concomitant use of proteasome and HDAC inhibitors has been 

shown to be superior to either treatment alone. It has also been reported that delta-aminolevulinic 

acid dehydratase (ALAD) is a proteasome-associated protein, and may function as an endogenous 

proteasome inhibitor. While the role of ALAD in the heme biosynthetic pathway is well 

characterized, little is known about its interaction with, and the mechanism by which it inhibits, 

the proteasome. In this chapter, the ALAD-proteasome complex was further characterized in 

cultured prostate cancer cells and the effects of SAHA treatment on the regulation of ALAD were 

investigated. ALAD interacts with the 20S proteasomal core, but not the 19S regulatory cap, 

associated with ubiquitination of proteasomal α2 subunits. SAHA treatment increases ALAD 

protein levels and promotes acetylation of ubiquitinated α2 protein. Thus, the mechanism by which 

ALAD binds to the 20S proteasome, as well as its involvement in a previously unreported post-

translational modification of proteasomal α subunits is described. 
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RESULTS 

ALAD binds the 20S proteasome in place of the 19S proteasomal cap and associates with a 

modified form of α2 subunit in cultured prostate cancer cells and in human erythrocytes 

 

Endogenous levels of ALAD were first determined by Western blot. Prostate cancer cell 

lines DU145, LNCaP and PC-3 exhibit varying levels of ALAD (Figure 12A), while in general, 

ALAD is expressed similarly in human erythrocytes from several individuals (Figure 13A). Next, 

to ascertain how ALAD interacts with the proteasome in cells, PC-3 cell lysates were 

immunoprecipitated with anti-ALAD. Immunoblotting with anti-ALAD antibody confirms the 

successful immunoprecipitation of ALAD with anti-ALAD, but not control IgG (Figure 12B).   

The proteasomal α2 subunit (26 kD band), along with two bands with apparent molecular masses 

of 34 and 38-40 kD, respectively, were recognized by anti-α2 antibody in the anti-ALAD 

pulldown, but not in the control IgG pulldown (Figure 12B). Importantly, this interaction was also 

observed in samples of human erythrocytes (Figure 13B). These 34 and 38 kD bands may be 

ubiquitinated forms of proteasomal α2 subunits (see below). Therefore, endogenous ALAD binds 

the 20S proteasome and is associated with some modified forms of proteasomal α2 subunit.  

Because endogenous ALAD protein levels are relatively low (compared with human 

erythrocytes; Figure 12A), these prostate cancer cells were then transfected with either myc-tagged 

full length ALAD or empty vector (as a control) for 48 hours and subjected to analysis by Western 

blot. The transfection efficiency varies among these cell lines, with more successful transfection 

in LNCaP and PC-3 cells than DU145 cells (Figure 12A).  Due to the high transfection efficiency 

in PC-3 cells, ALAD-transfected PC-3 cells were used for the remainder of experiments. 

The interaction of ALAD with the modified forms of proteasomal α2 was then confirmed 

(Figure 12C) in myc-tagged ALAD-transfected PC-3 cells. Similar to the results in parental PC-3 

cells (Figure 12B), an anti-myc antibody pulled down two similarly modified forms of proteasomal 
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α2 subunit (MW 34 & 38-40 kD), but not the 19S subunit Rpn7/S10a (Figure 12C), confirming 

that ALAD binds to a modified form of α2, in place of the 19S subunit.  Consistently, an anti-

Rpn7/S10a antibody pulled down the unmodified proteasomal α2, but not the modified form(s) of 

α2 or ALAD (Figure 12D).  Importantly, the ALAD-associated, modified form of α2 appears to 

be ubiquitinated, as an anti-ubiquitin antibody recognizes two bands at the same molecular weights 

(34 & 38-40 kD) in the anti-myc pull down fraction (Figure 12C). Because both 34 and 38-40 kDa 

bands are recognized by anti-α2 and anti-ubiquitin antibodies, it is unlikely that the 34 kD band is 

a degraded form of the 38-40 kD band. Thus, these results indicate that ALAD binds to the 20S 

proteasomal core in the position of the 19S regulatory cap, associated with ubiquitination of the 

α2 subunits.  
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Figure 12. ALAD binds the 20S proteasome in place of the 19S regulatory cap and is 

associated with ubiquitinated forms of α2 in cultured prostate cancer cells. A) Protein 

levels of endogenous and tagged ALAD protein in prostate cancer cells. Several prostate 

cancer cell lines were transfected with empty vector or myc-tagged full length ALAD for 48 

h followed by Western blot analysis. B) Endogenous ALAD interacts with a modified form 

of α2. Parental PC-3 cell lysates were immunoprecipitated with anti-ALAD followed by 

Western blot analysis. C) A ubiquitinated form of proteasomal α2, but not the 19S cap 

(Rpn7/S10a), is pulled down with myc-tagged ALAD in transfected PC-3 cells. Lysates from 

myc-tagged full length ALAD-transfected PC-3 cells were immunoprecipitated with anti-myc 

followed by Western blot analysis with the indicated antibodies. D) ALAD is not pulled down 

with the 19S proteasome. Lysates from empty vector or myc-tagged full length ALAD-

transfected PC-3 cells were immunoprecipitated with anti-Rpn10 (a 19S subunit), followed 

by Western blot analysis. Matched IgG immunoprecipitation was performed as a control. - = 

No transfection; V = Vector-transfected; A = ALAD-transfected; P = Pulldown; S = 

Supernatant; I = Input. 

 



www.manaraa.com

52 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. ALAD binds the 20S proteasome and is 

associated with ubiquitinated forms of α2 in human 

erythrocytes. A) Protein levels of endogenous ALAD 

protein in erythrocytes of prostate cancer patients and 

matched controls. Representative Western blot of 9/122 

samples. Orange = Cases; Green = Controls. B) 

Endogenous ALAD in human erythrocytes interacts with a 

modified form of α2. Two samples expressing high levels 

of ALAD were subjected to analysis by 

immunoprecipitation-Western blot. Protein was 

immunoprecipitated with anti-ALAD followed by Western 

blotting with anti-α2. Matched IgG immunoprecipitation 

was performed as a control. P = Pulldown; S = Supernatant; 

I = Input. 

 



www.manaraa.com

53 

 

 
 

ALAD inhibits proteasomal CT-like activity and is a proteasomal target protein 

 

To verify the proteasome inhibitory ability of ALAD, PC-3 and LNCaP cells were 

transfected with empty vector or myc-tagged ALAD for 48 hours, followed by measurement of 

CT-like activity (Figure 14A). Overexpression of full length ALAD resulted in approximately 30% 

and 55% inhibition in PC-3 and LNCaP cells, respectively. Thus, ALAD does exhibit some 

proteasome inhibitory ability. 

To investigate the regulation of ALAD, PC-3 cells were transfected with empty vector or 

myc-tagged ALAD, followed by treatment with the proteasome inhibitor MG-132. Analysis by 

Western blot reveals that treatment with MG-132 results in an accumulation of both endogenous 

and tagged ALAD proteins (Figure 14B), indicating that ALAD is a substrate protein of the 

proteasome. 
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Figure 14. ALAD is both an inhibitor and a target of the proteasome. A) 

ALAD inhibits proteasomal CT-like activity. PC-3 or LNCaP cells were 

transfected with empty vector or myc-tagged full length ALAD for 48 h 

followed by measurement of proteasomal CT-like activity. B) ALAD is a 

proteasomal target protein.  PC-3 cells were transfected with empty vector or 

myc-tagged full length ALAD for 48 h followed by treatment with 1µM MG-

132 for 24 h and analysis by Western blot.  
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SAHA treatment enhances the ALAD-proteasome interaction, associated with acetylation of 

ubiquitinated α2 subunits  

 

In an attempt to elucidate a role for HDAC inhibition in the regulation of ALAD and the 

proteasome, PC-3 cells were transfected with empty vector or myc-tagged full length ALAD for 

48 h followed by treatment with 5 or 10 µM SAHA for 24 hours. Western blot analysis revealed 

that SAHA treatment dramatically increases expression levels of both endogenous and transfected 

ALAD proteins in a dose-dependent manner (Figure 15A). As a control, treatment of these cells 

with SAHA also increased levels of acetylated histone H3 protein (Figure 15A). 

Importantly, SAHA treatment also enhances the interaction between ALAD and the 20S 

proteasome in ALAD-transfected PC-3 cells, compared with the solvent control (Figure 15B). 

Again, anti-myc pulled down a ubiquitinated protein(s) at a molecular weight identical to that of 

the modified α2 band (~38 kDa; Figure 15B; Lanes 5, 7), further suggesting that ALAD-associated 

α2 is ubiquitinated. Furthermore, the level of this α2 species was significantly increased following 

SAHA treatment (Figure 15B; Lanes 5 vs. 7). A specific anti-Ac-lysine antibody also recognized 

a similar band at ~38 kDa, suggesting that this modified α2 is also acetylated after SAHA treatment 

(Figure 15B; Lanes 5, 7). Again, the 19S subunit S10a was not found in the anti-myc pulldowns 

(Figure 15B), confirming that there is no 19S proteasome in the ALAD-20S proteasome 

complexes. These results suggest that in addition to increasing ALAD protein expression 

(presumably by inhibiting ALAD degradation), SAHA treatment also causes acetylation of 

ubiquitinated α2 subunits and enhances the ALAD-proteasome interaction. 
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Figure 15. SAHA treatment enhances the ALAD-proteasome interaction, associated with 

acetylation of ubiquitinated α2 subunits. A) SAHA treatment enhances ALAD protein levels in a 

dose-dependent manner. Empty vector or myc-tagged full length ALAD-transfected PC-3 cells were 

treated with 5 or 10 µM SAHA for 24 h followed by Western blot analysis. V = Vector-transfected; A 

= ALAD-transfected; - = No treatment; DM = DMSO treatment. B) SAHA enhances the ALAD-

proteasome interaction and promotes acetylation of ubiquitinated α2. Myc-tagged full length ALAD-

transfected cells were treated with 10 µM SAHA for 24 h followed by immunoprecipitation with anti-

myc and analysis by Western blot. Matched IgG immunoprecipitation was performed as a control. + = 

SAHA-treatment; - = DMSO treatment; P = Pulldown; S = Supernatant; I = Input. 
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SAHA treatment promotes nuclear localization of ALAD-proteasome complexes  

It has been shown that proteasomes exist in both the nucleus and cytosol (Brooks, et al. 

2000; Tanaka, et al. 1989). To ascertain whether ALAD interacts with cytosolic or nuclear 

proteasome, or both, ALAD-transfected PC-3 cells were fractionated into cytosolic and nuclear 

fractions, followed by Western blot analysis (Figure 16A). In these PC-3 cells, ALAD appears to 

exist only within the cytosol (Figure 15A; Lanes 3 vs. 7). Immunofluorescence was also performed 

and confirmed cytosolic localization of ALAD in untreated ALAD-transfected PC-3 cells (Figure 

16B). However, when transfected PC-3 cells were treated with 10 µM SAHA, followed by cellular 

fractionation, Western blot analysis revealed that SAHA treatment causes nuclear localization of 

ALAD (Figure 16A; Lanes 7 vs. 8); actin and H3 proteins were used as cytosolic and nuclear 

controls, respectively.  

Immunoprecipitation with anti-myc following transfection and SAHA-treatment 

demonstrated that SAHA treatment also causes nuclear localization of ALAD-associated 

ubiquitinated α2 (Figure 16C; Lane 7). Anti-myc antibody pulled down ubiquitinated α2 in the 

nuclear, but not the cytosolic fraction of ALAD-overexpressing PC-3 cells after SAHA treatment, 

compared with DMSO-treated cells (Figure 16C). Additionally, nuclear ubiquitinated α2 is also 

acetylated in the SAHA-treated (compared with DMSO-treated) ALAD-overexpressing cells 

(Figure 16C; Lane 7). Together, these results suggest that acetylation may function to localize 

ALAD-associated ubiquitinated α2-containing proteasome complexes to the nucleus. 
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Figure 16. SAHA-treatment promotes nuclear localization of ALAD and modified α2. A) ALAD is a 

cytosolic protein that is localized to the nucleus after treatment with SAHA. Vector or myc-tagged full 

length ALAD-transfected PC-3 cells were treated with 10 µM SAHA for 24 h followed by subcellular 

fractionation and analysis by Western blot.  B) ALAD is a cytosolic protein. ALAD-transfected PC-3 cells 

were visualized by immunofluorescence microscopy. The lack of purple color in the nuclei indicates that 

ALAD exists only in the cytosol under normal conditions.  C) SAHA-treatment promotes nuclear 

localization of acetylated/ubiquitinated α2. PC-3 cells transfected with myc-tagged full length ALAD for 

48 h were treated with 10 µM SAHA for 24 h, followed by subcellular fractionation, immunoprecipitation 

with anti-myc, and Western blot analysis. Matched IgG immunoprecipitation was performed as a control. 

Cyt = Cytosolic fraction; Nuc = Nuclear fraction; V = Vector-transfected; A = ALAD-transfected; + = 

SAHA-treatment; - = DMSO treatment; P = Pulldown; S = Supernatant; I = Input. 

 



www.manaraa.com

59 

 

 
 

Purified ALAD promotes ubiquitination of proteasomal α2 under cell free conditions 

To determine whether ALAD plays a direct role in the ubiquitination of proteasomal α2, a 

cell-free ubiquitination assay was performed. Purified ALAD, ubiquitin, and 20S proteasome were 

incubated with a PC-3 cell extract (to provide necessary enzymatic activities) in a buffer containing 

ATP for 2 hr at 37°C, followed by Western blot analysis with anti-ubiquitin. In the presence of 

cell lysate, ubiquitin and 20S proteasome as well as purified ALAD, a ubiquitinated protein with 

MW 38 kDa (Figure 17), similar to ubiquitinated proteasomal α2 (Figures 12, 13, 15, 16), was 

detected. However, it was not observed when any one of the components was missing (Figure 17), 

suggesting that purified ALAD is able to promote ubiquitination of proteasomal α2 subunits in a 

cell-free system.  
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Figure 17. Purified ALAD promotes ubiquitination of 

proteasomal α2 under cell free conditions. PC-3 cell 

lysates (10 µg; no transfection) were incubated with 6 mM 

ATP and various combinations of purified ALAD (5 µg), 

ubiquitin (1 µg) and human 20S proteasome (60 ng) for 2h 

followed by analysis by Western blot with anti-ubiquitin or 

anti-actin (as control). 
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DISCUSSION  

 Many proteins are known to interact with the proteasome to carry out various functions. 

Some examples include Rad23 which is a carrier molecule for proteins destined for the proteasome 

(Elsasser, et al. 2002), HSP70 which aids in the unfolding of protein substrates prior to their 

degradation by the proteasome (Bercovich, et al. 1997) and ALAD, which has been reported to 

inhibit the proteasome (Guo et al. 1994) upon its direct binding to the proteasome (Bardag-Gorce 

and French 2011). Additionally, the proteasome has been reported to exist in several forms, 

including the constitutive 26S proteasome, which is the most common form, consisting of the 20S 

core and two 19S regulatory caps. Alternatively, the 20S core can be unbound, the predominant 

species in mature ALAD-expressing erythrocytes (Neelam, et al. 2011), or it can contain immune-

specific catalytic subunits and interact with two 11S regulatory subunits to form the 

immunoproteasome.  The data presented in this chapter have confirmed that the proteasome exists 

in an ALAD-bound state, in which ALAD binds in place of the 19S regulatory cap(s) (Figures 

12B-D). It is possible that when ALAD is bound, substrate proteins are unable to enter the catalytic 

core, thus inhibiting its activity (Figure 18). Consistently, transfection of prostate cancer cells with 

full length ALAD did result in decreased proteasomal activity (Figure 14A). However, further 

studies are necessary to confirm this molecular mechanism.  

 These data show that ALAD promotes ubiquitination of 20S proteasomal α2 subunits 

(Figures 12B, C; 13B; 18). Post-translational modifications are important for the proper assembly 

and function (Iwafune, et al. 2002; Kimura, et al. 2000; Satoh, et al. 2001; Zhang, et al. 2003) of 

the 26S proteasome, and studies have shown that these post-translational modifications include 

phosphorylation, myristylation, glycosylation and acetylation (Kikuchi, et al. 2010). 

Monoubiquitination, unlike polyubiquitination, does not serve as a signal for degradation, rather 
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it can be a signal for fates like receptor internalization, vesicle sorting, DNA repair, gene silencing 

and subcellular localization (Gregory, et al. 2003; Johnson 2002). Additionally, 

monoubiquitination of the 19S subunit Rpn10/S5a has been reported to inhibit its binding to 

ubiquitinated protein substrates by blocking its ubiquitin-interacting motif (Isasa, et al. 2010). 

However, ubiquitination of 20S subunits has not been reported. Thus, a previously unreported 

post-translational modification to a proteasomal 20S subunit, which may serve to alter its function, 

is described here. The monoubiquitination of proteasomal α2 (Figures 12B, C; 13B) may directly 

inhibit its function, or it may serve as a docking point for ALAD, which when bound, inhibits 

proteasome activity. The exact function for this ubiquitination, as well as potential ubiquitination 

of other 20S core proteins must also be explored.  

 Due to previous success with the combination of the HDAC inhibitor SAHA and 

proteasome inhibitors like bortezomib, the effects of SAHA on ALAD and its interaction with the 

20S proteasome were investigated. Interestingly, SAHA treatment enhances ALAD protein levels 

as well as the ALAD-proteasome interaction (Figure 15A, B). In addition to its enhancement of 

ALAD protein levels, SAHA also causes acetylation (Figure 15C) and nuclear localization (Figure 

16C) of the ubiquitinated proteasomal α2 species. While protein acetylation has only recently been 

heavily explored, many functions have been suggested for the cytosolic acetylation of proteins. 

Several studies have revealed at least one-hundred proteins that are acetylated for purposes like 

cytoskeletal regulation and transport along the cytoskeleton, translation, membrane transport, and 

subcellular localization (Sadoul, et al. 2011). Interestingly, protein acetylation has also been 

described in other cellular organelles including the mitochondria, ER and Golgi apparatus (Sadoul 

et al. 2011).  When acetylation serves as a marker for localization, it enhances the nuclear 

localization of some proteins and the cytosolic localization of others (Sadoul et al. 2011).  While 
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proteasomes are expressed ubiquitously throughout the cell (Brooks et al. 2000; Tanaka et al. 

1989), ALAD is a cytosolic protein (Lim and Sassa 1993), as expected, since its major role is in 

heme biosynthesis. Cytosolic localization of ALAD (Figure 16A, B) has also been confirmed, and 

the data also revealed that treatment with the HDAC inhibitor SAHA results in translocation of 

proteasome-bound ALAD into the nucleus (Figure 16A).  Therefore, it is possible that acetylation 

of ALAD-bound α2 subunits functions to cause nuclear import of proteasomes, which might have 

an important function, for example, inducing tumor cell death or growth inhibition (Figure 18), 

which must be further investigated.  

 Taken together, the data in this chapter suggest the following mechanism (Figure 18): i) 

ALAD binds to the proteasomal α ring in place of the 19S regulatory cap, promoting ubiquitination 

of α2 (and possibly other α subunits), and ii) upon HDAC inhibition, ALAD levels are enhanced, 

ALAD-bound-, ubiquitinated α2 is acetylated and the ALAD-proteasome (with 

acetylated/ubiquitinated-α2) complex translocates into the nucleus. Further understanding of 

ALAD-proteasome complexes may have a clinical impact in improving proteasome inhibitor or 

HDAC inhibitor-based anti-cancer therapies.   
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Figure 18. Proposed Mechanism of ALAD-Proteasome Binding. ALAD binds to the 20S proteasomal core 

in place of the19S proteasome and promotes ubiquitination of α2 subunits (and potentially other α subunits). 

ALAD binding to the 20S core hinders binding of the 19S regulatory cap(s), thus inhibiting entry of substrate 

proteins into the catalytic core. Upon HDAC inhibition, ALAD levels are enhanced, ubiquitinated α2 is 

acetylated and the ALAD-proteasome (with acetylated/ubiquitinated-α2) complex translocates into the 

nucleus, likely resulting in induction of apoptosis or cell growth inhibition in tumor cells. 
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CHAPTER 4 

METAL COMPLEXES TARGETING THE 20S PROTEASOMAL CORE 

 Metals have been intensively studied for decades following the success of cisplatin as a 

treatment for cancer. This search for new metal-based drugs, spurred by the limitations, including 

toxicity and resistance, of cisplatin, began with second-generation platinum-based compounds like 

carboplatin and oxaliplatin (Alama, et al. 2009; de Gramont, et al. 2000; Harrap 1985).  Thus, the 

investigation into new metal-based drugs began with the design of structurally similar complexes 

containing platinum, with the hypothesis that similar structure leads to similar function (Calamai, 

et al. 1998). However, while structure and the identity of the metal center are important, the 

activities of these metal compounds are also influenced by oxidation state and coordination 

geometry of the complex, as well as redox activity, electric charge and kinetic lability.  

Along this line, various metal centers with different ligand structures have been 

investigated for their ability to suppress tumor growth both in vitro and in vivo.  Cadmium-,  

copper-, gallium-, gold-, ruthenium- and zinc-containing complexes (Bastow, et al. 2011; Calamai 

et al. 1998; Chen et al. 2007b; Cvek, et al. 2008; Frezza, et al. 2009; Hartinger, et al. 2008; Jakupec, 

et al. 2005; Milacic, et al. 2008a; Milacic et al. 2006; Sava, et al. 1995; Sava, et al. 1992; Zhang et 

al. 2010; Zhang, et al. 2013), as well as copper-chelating compounds, which take advantage of 

high intracellular copper levels (Chen et al. 2007a; Chen et al. 2006; Daniel, et al. 2004; Lee, et 

al. 2013), have all been shown to be active against many human cancers. While cisplatin is known 

to target DNA and form adducts, many of these metal-based complexes are potent inhibitors of the 

proteasome. The successful results from previous studies led to further investigation into a series 

of metal complexes incorporating different metals and new ligand structures, which are described 

in this chapter.   
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First, the proteasome- and tumor-inhibiting capabilities of a series of cobalt-containing 

complexes, [CoII(L1)2] (1), [CoII(L2)] (2), and [CoIII(L1)2]ClO4 (3) (Figure 19), were explored. 

These complexes contain the deprotonated forms of the previously reported [NN′O] tridentate 

ligand HL1 and its newly synthesized [N2N′2O2] hexadentate counterpart H2L2  (2,4-diiodo-6-

((pyridine-2-ylmethylamino)methyl)phenol and 6,6′-((ethane-1,2-diylbis((pyridin-2-ylmethyl) 

azanediyl))bis(methylene))bis(2,4-diiodophenol)). Species 3, the most inert, but redox active 

species was determined to be the most potent due to its tethered ligand structure combined with 

the redox activity of its Co(III) metal center, which promotes intracellular ligand dissociation 

(Tomco et al. 2011).  
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Figure 19. Structures of Cobalt Compounds. A) [CoII(L1)2] (1) and [CoIII(L1)2]ClO4 (3)  B) [CoII(L2)] (2) 
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A set of novel gold(III)-based complexes, AuD6 and AuD8 (([AuIIIBr2(dtc-Sar-AA-O(t-

Bu))] with AA = Gly or Aib (α-aminoisobutyric acid), respectively)) whose ligands are di-peptide 

derivatives differing only in the substituents at the α-carbon atom at the C-terminus (Figure 20), 

was then investigated. While both compounds proved to be potent proteasome inhibitors and tumor 

growth suppressors in vitro and in vivo, AuD8 was slightly more potent (Nardon et al. 2014). AuD8 

was also more selective against CT-like activity, which may explain its increased tumor growth 

inhibitory ability compared to AuD6.  
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Figure 20. Structures of New Gold(III) Complexes. A) AuD6 B) AuD8 
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Next, proteasome inhibition as a secondary mechanism of toxicity for heavy metal species 

was examined. The toxicity of a series of aluminum-, cadmium-, mercury-, lead- and tin-species, 

[AlIII(Liodo)
2]ClO4 (#1), [CdII(Liodo)Cl]·H2O (#2), [HgII(Liodo)

2]·4DMSO (#3), [PbII(Liodo)NO3] 

(#4), and [SnIV(Liodo)Cl3] (#5) (Figure 21), was confirmed in transformed human prostate cells, 

with the aluminum species (#1) being the most potent.  However, this species, as well as the tin-

containing compound (#5), showed little to no proteasome inhibitory activity, suggesting that their 

toxicity is likely due to mechanisms other than proteasome inhibition. The correlation between 

proteasome and cell growth inhibition of cadmium (#2) and lead (#4) species was somewhat 

stronger, indicating that the toxicity of these species may be due to proteasome inhibition. The 

significant proteasome inhibition coupled with potent cell growth inhibition resulting from 

treatment with the mercury complex (#3), suggests that proteasome inhibition is a secondary 

mechanism for mercury toxicity (Tomco et al. 2014).  
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Figure 21. Structures of Heavy Metal Complexes. A) [AlIII(Liodo)
2]ClO4 (#1) B) [CdII(Liodo)Cl]·H2O 

(#2), [PbII(Liodo)NO3] (#4) C) [HgII(Liodo)
2]·4DMSO (#3) D) [SnIV(Liodo)Cl3] (#5) 
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The proteasome-inhibitory, apoptosis-inducing activity of a second-generation tethered 

gallium complex, GaIIIDiIBPEN, was then compared to that of the same ligand containing zinc, 

ZnIIDiIBPEN (Figure 22). Unexpectedly, the 1:2 metal:ligand gallium complex was more potent 

than the first generation 1:1 metal:ligand gallium complex (Chen et al. 2007b), with the zinc-

containing species being completely inactive. Like the cobalt species, the increased potency of the 

gallium(III) species is likely due to its redox activity compared to zinc(II), again promoting ligand 

dissociation to create the preferred 1:1 species (Tomco et al. 2011). This tethered complex may be 

more stable in solution, giving it more time to reach its target. Additionally, the bioavailability and 

promiscuity of zinc may result in the zinc(II) species being intercepted by other proteins within 

the cell prior to it reaching the proteasome. 
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Figure 22. Structures of Tethered Ga(III) and Zn(II) Complexes.  

A) GaIIIDiIBPEN B) ZnIIDiIBPEN 
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Finally, the antibiotic nitroxoline (Figure 23A), a strong copper chelator (Pelletier, et al. 

1994) that has been used for years for the treatment of urinary tract infections, was shown to be a 

more potent proteasome inhibitor and tumor growth suppressor both in vitro and in vivo than the 

structurally similar compound clioquinol (Figures 11B; 23B). Importantly, 5NHQ has previously 

been shown to induce tumor cell death by inhibition of angiogenesis in bladder cancer (Shim, et 

al. 2010), as well as through the generation of reactive oxygen species in lymphoma, leukemia and 

pancreatic cancer cells (Jiang, et al. 2011). Thus, this chapter presents a new mode of action for 

the antibiotic nitroxoline, further validating that using previously approved drugs is a viable 

strategy for the treatment of human cancers. 
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Figure 23. Structures of Nitroxoline and Clioquinol. A) 

Nitroxoline (5NHQ) B) Clioquinol (CQ). Dashed lines represent 

species bound to copper.  
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4.1 Effects of Tethered Ligands and of Metal Oxidation State on the Interactions of Cobalt 

Complexes with the 26S Proteasome 

 

Adapted from published material in J Inorg Biochem. 2011 December; 105(12):1759–1766. 

RESULTS 

Complex 3, the Co(III) species, inhibits cellular proliferation 

To determine the effects of complexes 1 and 3 (Figure 19) on cell proliferation, human 

prostate cancer PC-3 cells were treated with various concentrations of 1, 3, or DMSO as a solvent 

control, for 18 hours followed by measurement by MTT assay (Figure 24). Cells treated 

with 3 exhibited dramatically decreased cell proliferation in a dose-dependent manner, with a 40% 

decrease in cell proliferation at 20 μmol/L and reaching nearly 100% inhibition at 30 μmol/L. In 

contrast, treatment with 1 resulted in little inhibition of cellular proliferation (~30%) even at the 

highest concentration tested.  
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Figure 24. Complex 3, the Co(III) species, inhibits PC-3 cell proliferation. 

PC-3 cells were treated with 10-50 μM compound 1 or 3 for 18 h followed by 

analysis by MTT assay.  
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Complex 3 inhibits purified 20S proteasome 

To test the proteasome inhibitory ability of these species, 1, 2 and 3 were compared under 

cell-free conditions. Human purified 20S proteasome was incubated with ligand alone, CoII(ClO4)2 

salt, or 1, 2 and 3 at different concentrations, followed by measurement of CT-like activity.   CT-

like activity was drastically inhibited by 3 (Figure 25B), modestly inhibited by CoII(ClO4)2 salt, 

but not by 1 or 2 (Figure 25A).  These results indicate that Co(III) is potent against purified 

proteasome, while Co(II) is inactive regardless of its ligand.  
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Figure 25. Complex 3 inhibits purified 20S proteasome activity. Purified 

proteasome was incubated with 1-50 µM compound 1, 2 or 3 for 2-4 h, followed 

by measurement of CT-like activity. A) Compound 1 versus 2 B) Compound 1 

versus 3.  
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Complex 3 inhibits cellular proteasome activity and induces apoptosis in prostate cancer cells  

To confirm the ability of 3 to inhibit proteasomal activity in intact tumor cells, PC-3 cells 

were first treated with different concentrations (up to 50 μM) of 1 and 3 for 18 hours, followed by 

measurement of proteasome inhibition. PC-3 cells treated with 3 showed a dose-dependent 

inhibition of proteasomal activity by ~35% at 30 μM and ~95% at 50 μM (Figure 26). Consistently, 

increased accumulation of ubiquitinated proteins was also observed in a dose-dependent manner 

(Figure 27B). Conversely, cells treated with 1 showed negligible proteasome inhibition. 
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Figure 26. Complex 3 inhibits cellular proteasome activity. PC-3 cells were 

treated with up to 50 μM of 1 and 3 for 18h followed by measurement of 

proteasome activity.  
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To investigate whether proteasome inhibition is associated with apoptotic cell death, 

apoptosis-specific caspase-3 induction and PARP cleavage were measured spectrophotometrically 

and by Western blot analysis (Figure 27). Dramatic induction of caspase-3 was observed in cells 

treated with 3 at 40 μM (Figure 27A) and, as expected, abrogation of full length PARP also 

occurred in cells treated with 30-50 μM 3 (Figure 27B). Cells treated with 1 at the highest 

concentration tested had little visible effect. Thus, induction of apoptosis by 3 in PC-3 cells is 

associated with inhibition of proteasomal chymotrypsin-like activity. 
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Figure 27. Complex 3 induces apoptosis in PC-3 cells. PC-3 cells were treated 

with 10-50 μM of 1 and 3 for 18h followed by A) measurement of caspase-3 

activity and B) Western blot analysis.  
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DISCUSSION 

The data in this chapter describe an interaction between cobalt complexes and the 26S 

proteasome.  Specifically, the activities of 1:2 and 1:1 metal-to-ligand six-coordinate cobalt 

species toward cell proliferation, purified 20S proteasome, and intact PC-3 prostate cancer cells 

were compared. The 1:2 species 1 and 3 are formed respectively between cobalt(II) or cobalt(III) 

ions and two deprotonated [NN′O] ligands (L1)-, whereas the 1:1 species 2 is comprised of a 

cobalt(II) ion and the new [N2N ′2O2] ligand H2L2 in its deprotonated form. Proteasome inhibition 

is severely hampered for the 1:1 species 2, confirming the need for ligand dissociation as a 

requirement for proteasome inhibition. Surprisingly, the kinetically inert 3 showed remarkable 

proteasome inhibition, far superior to that observed for the labile 1, which is likely due to the fact 

that cobalt(III) is a redox-active species capable of being reduced to cobalt(II) within the reducing 

cellular environment by available reductants. This reduction has been demonstrated individually 

by several groups and utilized for release of alkylating agents such as nitrogen mustards (Hall, et 

al. 2007; Schieber, et al. 2011). In this process a labile cobalt(II) species is generated, favoring 

ligand dissociation and interaction with the proteasome. Additionally, it is unlikely that 

species 1, which already contains a labile cobalt(II) species will remain intact within cells, 

prohibiting it from reaching the target, which in this case is the proteasome. Thus, the possibility 

of using redox-active metals that can be reduced intracellularly opens a stimulating window of 

opportunity to explore proteasome inhibition, both by metal activation as demonstrated here and 

in other studies (Souza, et al. 2009), as well as by using metal ions as carriers for drug delivery 

(Hall et al. 2007).  
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4.2 Gold(III)-Dithiocarbamato Peptidomimetics in the Forefront of the Targeted 

Anticancer Therapy: Preclinical Studies against Human Breast Neoplasia 

Adapted from published material in PLoS One. 2014; 9(1): e84248. 

RESULTS 

Inhibition of MDA-MB-231 cell proliferation by AuD6 and AuD8 in comparison with cisplatin 

The in vitro cytotoxicity of AuD6 and AuD8 (Figure 20) against MDA-MB-231 cells was 

assessed via MTT assay after 24 hour treatment. While both complexes inhibited tumor cell growth 

in a concentration-dependent manner, AuD8 was much more potent than AuD6, with an IC50 value 

± SD of 6.5±0.6 (Figure 28A) compared to 17±1 µM (Figure 28B), respectively. Notably, MDA-

MB-231 cells were resistant to cisplatin under the same experimental conditions. In fact, after 24 

hour treatment with 100 µM, the IC50 was not reached (Hong, et al. 2008). In concordance with 

previous studies reporting slower kinetics of cisplatin, about 30% inhibition was observed 

following 24 hour treatment with 100 µM cisplatin (Ronconi, et al. 2006). 
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Figure 28. Aud6 and AuD8 are potent inhibitors of cellular 

proliferation. MDA-MB-231 cells were treated with increasing 

concentrations of A) AuD6 or B) AuD8, or 100 µM cisplatin for 24 h 

followed by measurement of cell viability by MTT assay.   
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The ROS scavenger Trolox enhances the antiproliferative ability of AuD6 

To determine if generation of reactive oxygen species is a potential mechanism of these 

gold-based compounds, MDA-MB-231 cells were co-treated with AuD6 or AuD8 and Trolox 

(Figure 29), the hydrophobic form of vitamin E, which is able to scavenge free radicals (Arellano, 

et al. 2011). First, cells were pretreated with 100 µM Trolox for 1 hour, followed by 24 hour 

treatment with each of the gold compounds. No changes in IC50 values for either compound were 

recorded (Figure 29), suggesting that inhibition of cell growth is independent of ROS generation. 

Cells were then co-treated with each of compounds and Trolox (100 µM) for 24 hours. As 

expected, higher antiproliferative activity was observed in the presence of Trolox. In fact, Trolox 

alone inhibited tumor cell growth by approximately 25% after 24 hours (Figure 29). Interestingly, 

Trolox reduced the IC50 of AuD6 approximately 3-fold, with very little effect on the activity of 

AuD8, suggesting that AuD6 may work in concert with Trolox to induce cell death, similar to 

results reported in other studies (Zheng, et al. 2012). 
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Figure 29. Trolox enhances the anti-proliferative ability of AuD6. MDA-

MB-231 cells were either pretreated with 100 µM Trolox for 1 h followed by 24 

h treatment with increasing concentrations of A) AuD6 or B) AuD8; or cells 

were co-treated for 24 h with 100 µM Trolox and increasing concentrations of 

A) AuD6 or B) AuD8.  
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AuD6 and AuD8 inhibit the proteasome under cell-free conditions 

To test the hypothesis that these gold compounds possess proteasome inhibitory activity, 

purified human 20S proteasome or MDA-MB-231 cell extract was incubated with increasing 

concentrations of each compound or DMSO, as control, and proteasomal CT-like, trypsin-like and 

PGPH-like activities were measured fluorogenically. Both complexes inhibited all three enzymatic 

activities in a concentration-dependent manner, although AuD8 showed some selectivity toward 

CT-like activity in both purified 20S and intact cellular proteasome (Table 2). For comparison, 

bortezomib was used as a positive control (IC50 = 2.2±0.6 nM for CT-like activity). 
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Table 2.  AuD6 and 8 inhibit proteasome activity 

under cell-free conditions. IC50 values of each 

compound against each proteasomal activity (µM±SD).  
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AuD6 and AuD8 inhibit cellular proteasome activity and induce apoptosis in MDA-MB-231 cells 

 

To elucidate to what extent these compounds inhibit cellular proteasome, MDA-MB-231 

breast cancer cells were treated with increasing concentrations of each complex for 24 hours, 

followed by measurement of proteasomal activities. Again, AuD8 preferentially inhibited CT-like 

activity (Figure 30B), and notably, both compounds were also able to inhibit PGPH-like activity 

(Figure 30). 
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Figure 30.  AuD6 and 8 inhibit intact cellular proteasome in MDA-

MB-231 cells. MDA-MB-231 cells were treated with increasing 

concentrations of A) AuD6 or B) AuD8 for 24 h followed by measurement 

of proteasomal CT-like and PGPH-like activities.  
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To further investigate the effects of these compounds in cells, MDA-MB-231 cells were 

treated with increasing concentrations (5, 10, 15 and 20 µM) of AuD6 or AuD8 for 24 hours 

(Figure 31A, B), followed by Western blot analysis. Marked accumulation of ubiquitinated 

proteins and proteasome target proteins p27 and IκBα, as well as caspase-3 activation and PARP 

cleavage were observed after treatment with AuD8. AuD8 treatment also resulted in enhanced 

levels of p36/Bax and consequent decrease or complete disappearance of p21/Bax and p18/Bax 

fragments. Additionally, morphological changes associated with apoptosis (rounding, detachment) 

were also observed in cells treated with AuD8 at concentrations as low as 10 µM (Figure 31C). 

The AuD6 complex was less potent than AuD8, as expected, based on their IC50 values 

(Figure 28). Indeed, only minimal effects on apoptotic markers (i.e., PARP cleavage and caspase-

3 activation) were observed following treatment with higher concentrations of AuD6 (Figure 31A).  

Similarly, morphological changes were only evident in cells treated with 20 µM AuD6 (the highest 

concentration tested; Figure 31C). 
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Figure 31.  AuD6 and 8 inhibit intact cellular proteasome and induce apoptosis in MDA-MB-

231 cells. MDA-MB-231 cells were treated with increasing concentrations of AuD6 or AuD8 for 24 

h followed by Western blot analysis and observation of morphological changes. A) Western blot 

analysis B) Western blot analysis for p27 following 24 h treatment with low concentrations of AuD8. 

C) Morphological changes; rounded, detached cells are considered apoptotic. DM = DMSO treatment. 
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To further validate that these compounds mediate cell death via apoptosis, MDA-MB-231 

cells were treated with 20 µM AuD6 or AuD8 for 16 or 24 hours followed by Annexin-V/PI 

staining and flow cytometry. The percentage of cells undergoing non-apoptotic cell death was 

comparable to solvent control (Figure 32). However, after 16 hour treatment with AuD8 the 

majority of cell death (62.9%) occurred by apoptosis (late stage), with increased apoptosis 

observed after 24 hours (74.1%; Figure 32). While both compounds resulted in similar amounts of 

early stage apoptosis (7–9%), AuD6 was less potent in terms of late stage apoptosis, with only 

about 49% induction after 24 hours (Figure 32). 
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Figure 32.  AuD6 and 8 induce apoptosis in MDA-MB-231 cells. MDA-MB-231 cells were treated 

with 20 µM AuD6 or AuD8 for 16 or 24 h. Cells were then labeled with Annexin–V FITC and PI, 

followed by flow cytometry analysis.  Early apoptotic cells are represented in the lower right quadrant 

while late apoptotic cells are the upper right. The lower left quadrant represents viable cells and the upper 

left, non-apoptotic cell death. 
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AuD8 inhibits the proteasome and suppresses tumor growth in vivo 

Finally, the anticancer activity of both compounds was investigated in vivo in female 

athymic nude mice bearing MDA-MB-231 tumor xenografts. Mice (n=21) were randomly divided 

into three groups of seven, and treated daily with either solvent control or AuD6 or AuD8 (1.0 

mg/kg/d). At day 13, three mice per group were sacrificed to determine if anti-tumor effects could 

be observed after only a short treatment period, and the remaining four mice per group were 

sacrificed at day 27 or when control tumors reached approximately 1,800 mm3. As expected, AuD8 

was slightly more potent than AuD6 (Figure 33A). AuD8 treatment resulted in about 53% 

inhibition of tumor growth compared to control (p<0.05; Figure 33A and Insert), and when only 

the most responsive mice are taken into account (40%), 85% inhibition was observed after 13 days 

(p<0.01; Figure 33B), with some mice exhibiting tumor shrinkage. 
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Figure 33. AuD8 inhibits the proteasome and tumor growth in vivo. Female nude mice bearing MDA-

MB-231 tumors were treated with vehicle control, AuD6 or AuD8 (1 mg/kg/d). A) Inhibition of xenograft 

growth by both complexes. Tumor volumes were measured every other day. Points represent the mean ± 

SD (bars) of seven mice per group. Insert: representative tumors from each treatment group; * = p<0.05. B) 

Xenograft growth inhibition in the most responsive mice. Insert: Average weights of mice over time; ** =

p<0.01. C) Immunohistochemical staining of p27 and TUNEL levels. Brown colored cells are considered 

positive. 
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AuD8 treatment also resulted in a significant (∼95%) increase in p27 expression levels 

compared to control (Figure 33C). However, only a moderate increase in p27 was observed 

following AuD6 treatment (~20%). These results are similar to those seen in vitro, with AuD8 

being a more potent proteasome inhibitor than AuD6. Western blot analysis confirmed the 

proteasome-inhibitory activity of these gold-based compounds. AuD8 was a more potent 

proteasome inhibitor than AuD6 (33% compared to 14% inhibition, respectively; Figure 34D) and 

AuD8 treatment also resulted in greater accumulation of IκB-α and Bax (Figure 34A, B).  

Importantly, proteasome inhibition was accompanied by apoptosis induction in vivo. AuD6 

treatment resulted in greater TUNEL positivity compared to AuD8 treatment (∼75% vs. 

∼30%; Figure 33C). Consistently, AuD6 was a more potent activator of caspase-3 than AuD8 

(Figure 34A–C). In contrast to results obtained in vitro, AuD6 appears to be a more potent inducer 

of apoptosis in vivo; a variability which may be due to induction of different apoptotic cascades 

(i.e. caspase-dependent versus independent) by each compound. Importantly, mice exhibited 

minimal changes in body weight over the course of the experiment (Figure 33C, Insert), indicating 

little to no toxicity resulting from these compounds. Notably, some variation in replicates was 

observed (Figure 33B), likely due to various individual mouse backgrounds. Taken together, these 

data suggest that these gold compounds are potent inhibitors of the proteasome, but proteasome 

inhibition may not be the only major mechanism responsible for apoptotic cell death mediated by 

these gold compounds. 
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Figure 34. AuD8 inhibits the proteasome and induces apoptosis in vivo. Female nude mice 

bearing MDA-MB-231 tumors were treated with vehicle control, AuD6 or AuD8 (1 

mg/kg/d). Tumors were collected and prepared for Western blot analysis after either A) 13-day 

treatment or B) 27-day treatment. I and II denote separate mice.  Tissues (27-day treatment) were 

also subjected measurement of C) caspase-3 activity and D) proteasomal CT-like activity. 
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DISCUSSION 

The data in this chapter demonstrate that the gold(III) dithiocarbamato-peptide derivatives 

AuD6 and AuD8 inhibit MDA-MB-231 tumor growth both in vitro (IC50 = 6.5±0.6 and 17±1 µM, 

respectively) and in vivo at a dose of 1.0 mg/kg per day. Xenograft tumor growth was inhibited by 

53% compared to control after 27 days and 85% after 13 days (Figure 33A, B). Notably, mice 

appeared healthy and active throughout the treatment. These gold compounds are also potent 

proteasome inhibitors and, although AuD6 and AuD8 resemble cisplatin structurally (i.e., square 

planar geometry with a d8 electronic configuration), these compounds are electrophilic 

coordination compounds (Dalla Via, et al. 2012), much like bortezomib. These similar chemical 

properties may explain the proteasome inhibitory ability of the gold complexes compared to 

cisplatin, suggesting that the metal center is more important than structure in determining 

intracellular targets. Thus, the metal center Au(III) could bind to proteasomal active sites, but it 

may also be involved in a redox process that would lead to the formation of gold(I)-containing 

species or metallic gold by oxidation of some residue, such as the nucleophilic threonine, within 

the proteasome. 

Additionally, previous studies indicated that toxicity of gold compounds is associated with 

generation of reactive oxygen species (Zhang et al. 2010), which is not surprising considering the 

redox-activity of gold. These derivatives however, appeared more potent in combination with 

Trolox, suggesting that cell death commitment is triggered by apoptotic mechanisms independent 

of free radical formation. Overall, these data confirm that the design of these gold compounds 

allows them to both stabilize the heavy metal center and avoid non-specific activity in healthy 

tissues that could give rise to systemic toxicity (Ronconi and Fregona 2009). 
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The encouraging results presented in this chapter have resulted in an international patent 

for the use of these novel gold compounds in cancer chemotherapy (Fregona, et al. 2010). 

Nevertheless, although the proteasome has been validated as one of the targets of these 

compounds, their potential interactions with other cellular targets, as well as any effects on gene 

modification are under investigation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

103 

 

 
 

4.3 Inhibition of the 26S Proteasome as a Possible Mechanism for Toxicity of Heavy Metal 

Species 

 

Adapted from published material in J Inorg Biochem. 2014 Jan 8. pii: S0162-0134(14)00002-6. 

RESULTS 

Heavy metal species suppress CRL2221 cellular proliferation 

 To evaluate the effects of heavy metal complexes on cellular proliferation, CRL2221 

transformed human prostate epithelial cells were treated with various concentrations of 1–5 

(Figure 21) or DMSO as a control for 72 hours followed by MTT analysis (Figure 35). All 

complexes inhibited cellular proliferation in a concentration-dependent manner, with IC50 values 

of 2 μM, 4 μM, 6 μM, 3 μM and 4 μM, for complexes 1-5, respectively. At lower concentrations, 

aluminum-containing 1 and lead-containing 4 exhibit the greatest inhibition of cell proliferation 

(89 and 95% and 84 and 86%, at 5 and 10 μM, respectively), followed by complex cadmium-

containing 2 (99% at 10 μM). Treatment with 2, 3, and 4 (Cd, Hg, and Pb, respectively) resulted 

in even higher inhibition of cellular proliferation (97–99%) at 25 and 50 μM. Complex 5 (Sn) 

resulted in a dose-dependent decrease in cell proliferation with 95% inhibition at 50 μM. These 

results suggest that heavy metal species are toxic toward cell proliferation in non-tumor cells. 

Aluminum-containing 1 is quite toxic at all concentrations, while cadmium-containing 2 and lead-

containing 4 show similar profiles where toxicity is marked at concentrations of 10, 25, and 50 μM 

and mercury- and tin-containing species 3 and 5 exhibit pronounced toxicity only at higher 

concentrations.  
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Figure 35. Heavy metal complexes suppress cell proliferation in CRL2221 

cells.  CRL2221 cells were treated with increasing concentrations of 1-5 for 72 

h followed by analysis by MTT assay. 
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Inhibition of purified 20S CT-like activity by heavy metals  

To determine whether these heavy metal complexes are able to inhibit proteasomal CT-

like activity, species 1–5 were incubated with purified human 20S proteasome, followed by 

measurement of CT-like activity (Figure 36). At lower concentrations (1 and 5 μM), mercury- 

containing complex 3 showed the greatest activity, inhibiting  88 and 98% CT-like activity 

respectively, followed by cadmium-containing 2 with 70 and 84% inhibition. Dose-dependent 

inhibition of 84% and 83%, resulted from treatment with 25 μM complexes 1 and 4, respectively, 

whereas only 30–40% inhibition occurred following treatment with 5, regardless of concentration 

(Figure 36). While previous reports indicated that the HLiodo ligand had negligible effects on 

purified CT-like activity (Hindo, et al. 2009), these results suggest that this ligand is toxic when it 

contains heavy metal species.  It is evident that high concentrations of 1, 4, and 5 are necessary for 

inhibition of purified 20S proteasome, and while 2 is more potent, 3 is the most potent from 10 to 

50 μM, suggesting a potential link between proteasome inhibition and cellular toxicity. 
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Figure 36. Heavy metal complexes inhibit purified proteasome activity. 

Purified human 20S proteasome was incubated with increasing 

concentrations of 1-5 for 2 h, followed by analysis of CT-like activity. 
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Heavy metal species inhibit cellular proteasome activity in intact cells 

To verify the ability of 2–5 to inhibit proteasome activity, intact CRL2221 transformed 

human prostate epithelial cells were treated with increasing concentrations (up to 25 μM) of each 

complex for 48 h, followed by measurement of proteasome activity (Figure 37). Cells treated with 

lead-containing 4 showed dose-dependent inhibition of proteasomal CT-like activity, with 41% 

inhibition at 5 μM, 46% at 10 μM and 73% at 25 μM (Figure 35). Consistently, levels of 

proteasomal CT-like activity were decreased by 52 and 43% after treatment with 10 μM cadmium- 

and mercury-species 2 and 3, respectively. In contrast, cells treated with the tin-containing 5 

showed negligible proteasome inhibition at lower concentrations, and only about 50% inhibition 

at 25 μM (Figure 37). This suggests that higher concentrations of 2–5 are necessary for inhibition 

of proteasomal CT-like activity, indicating that some of these toxic species may be prevented from 

crossing the cell membrane or be deterred by other intracellular targets before reaching the 

proteasome.  
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Figure 37. Heavy metal complexes inhibit cellular proteasome activity. 

CRL2221 cells were treated with increasing concentrations of 2-5 for 48 h, 

followed by measurement of CT-like activity. 
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Heavy metal species inhibit proteasome activity in cell extracts  

Inhibition of proteasomal CT-like activity was also measured in CRL2221 cell extracts 

after 24 hour treatment with complexes 1–5 (Figure 38). Mercury-containing complex 3 induced 

the greatest CT-like inhibition in a dose-dependent manner, reaching 99% inhibition at 25 μM. On 

the contrary, treatment with aluminum-containing complex 1 resulted in no proteasome inhibition 

even at the highest concentration (25 μM). CRL2221 cell extracts treated with 4 and 5 exhibited 

only about 30% inhibition at 25 μM (Figure 38). These data suggest that the mercury-containing 

complex 3 is the most potent proteasome inhibitor in cell extracts, further supporting the 

hypothesis that toxicity toward epithelial prostate cells might be associated with proteasome 

inhibition. 
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Figure 38. Heavy metal complexes inhibit proteasome activity in cell 

extracts. CRL2221 cell extracts (20µg) were incubated with increasing 

concentrations of 1-5 for 24 h, followed by measurement of CT-like activity. 
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DISCUSSION 

Earlier investigations of copper(II) complexes with the HLiodo ligand suggested that a 1:1 

metal:ligandiodo species is necessary for potent inhibition of proteasomal CT-like activity (Frezza 

et al. 2009; Hindo et al. 2009; Verani 2012) and studies of cobalt(Liodo) complexes (Tomco et al. 

2011) linked proteasome inhibitory activity to preferential oxidation states of the metal ion 

(Tomco, et al. 2012). In this chapter, the toxicity of five new species [Al(III)(Liodo)2]ClO4 (1), 

[Cd(II)(Liodo)Cl]·H2O (2),  [Hg(II)(Liodo)2]·4DMSO (3), [Pb(II)(Liodo)NO3] (4), and 

[Sn(IV)(Liodo)Cl3] (5) toward CRL2221 transformed prostate epithelial cells was investigated. 

These metals have been previously shown to be associated with a number of conditions affecting 

normal cellular function. For instance, organoaluminum species accumulate in bone and the central 

nervous system through interaction with erythrocytes and desferrioxamine, as well as impairing 

mitochondrial function resulting in globular astrocyte generation (Lemire and Appanna 2011) 

(Jeffery 1995). Cadmium demonstrates a lack of specificity towards cell organelles, interacts with 

DNA, and increases oxidative stress (Larregle and Ferranola 2010; Moulis 2010; Wolfgang and 

Jean-Marc 2013). Organomercury species can accumulate in the mitochondria and irreversibly 

inhibit selenoenzymes, leading to nervous system damage (Guzzi and La Porta 2008; Neustadt and 

Pieczenik 2007; Yang, et al. 2008). Organolead can substitute divalent metal ions, like calcium in 

ATPase pumps, thus disrupting homeostasis (Yasuhiro and Toshiyuki 2012). Finally, organotin 

species (Blunden and Wallace 2003) can incorporate into the Golgi apparatus, as well as 

coordinating to intracellular phospholipids (Arakawa 2000). While extensive knowledge on the 

primary toxicity mechanisms of these species exists, only little evidence is available associating 

proteasome inhibition to cadmium and lead in erythrocytes (Neslund-Dudas, et al. 2012) and with 
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organometallic tin species (Shi, et al. 2009), and it is likely that other secondary cellular targets 

are involved.   

All five species demonstrated high levels of inhibition of cell growth in a concentration-

dependent manner, with aluminum-containing complex (1) being the most potent and tin-

containing (5), the least. The cadmium, mercury and lead species (2), (3) and (4)  were the most 

active against the chymotrypsin-like activity of purified 20S, as well as intact proteasome in 

CRL2221 cells. Mercury-containing complex (3) proved to be the most potent against CT-like 

activity, with 2 and 4 as distant next candidates, particularly in cell extracts.  Taken together, these 

results indicate that the toxicity of the aluminum species, albeit high, cannot be directly associated 

to proteasome inhibition. A similar conclusion can be drawn regarding the tin-containing complex. 

On the other hand, the toxicity of cadmium- and lead-containing complexes is potentially 

associated with proteasome inhibition, although this is not definitively proven based on 

proteasome inhibition in cell extracts. The mercury species, particularly at higher concentrations, 

was potent in regards to cell growth and CT-like inhibition in purified proteasome, cell extracts 

and intact cells, suggesting a strong relationship between proteasome inhibition and mercury 

toxicity. Therefore, in spite of known prevalent mechanisms of cellular toxicity for mercury 

species, in particular inhibition of selenoenzymes, proteasome inhibition is a viable secondary 

route of toxicity.   
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4.4 Differential Effects of Ga(III)- and Zn(II)-Tethered Ligands on Proteasome Activity and 

Apoptosis in Cultured Prostate Cancer Cells 

 

RESULTS 

Tethered Ga(III), but not Zn(II), inhibits purified proteasome activity 

To evaluate whether these new tethered complexes could inhibit the proteasome, a cell-

free proteasome activity assay was performed by incubating purified human 20S (Figure 39A) or 

26S proteasome (Figure 39B) with different concentrations of GaIIIDiIBPEN (Figure 22; Figure 

39A, B) or ZnIIDiIBPEN (Figure 39A). Interestingly, the Ga(III) complex potently inhibited CT-

like activity in both purified proteasome species, whereas the Zn(II) complex had little inhibitory 

effect (Figure 39A, B). Taken together, these results show that GaIIIDiIBPEN, but not 

ZnIIDiIPBEN possesses the ability to inhibit CT-like proteasomal activity in a cell-free system. 
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Figure 39. Tethered Ga(III) inhibits purified proteasome 

activity. Purified human A) 20S or B) 26S proteasome was 

incubated with increasing concentrations of GaIIIDiIBPEN or 

ZnIIDiIBPEN for 2 h followed by measurement of CT-like activity. 
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Tethered Ga(III), but not Zn(II), inhibits proteasome activity and cell viability in PC-3 cells 

 

Similarly, the proteasome-inhibitory effects of these complexes were also measured in PC-

3 human prostate cancer cells. PC-3 cells were treated for 24 hours with increasing concentrations 

of GaIIIDiIBPEN or ZnIIDiIBPEN up to 50µM, followed by measurement of proteasomal CT-like 

activity. Unsurprisingly, the Ga(III) complex was much more potent (IC50 ≈ 22.5µM) than the 

Zn(II) complex (no inhibition at 50µM) against cellular proteasome activity in intact prostate 

cancer cells (Figure 40A). 

Following the determination that GaIIIDiIPBEN is a potent inhibitor of purified and cellular 

proteasomal CT-like activity, its effects on cellular viability in PC-3 human prostate cancer cells 

were examined. An MTT experiment revealed that GaIIIDiIBPEN inhibits cellular viability in a 

dose-dependent manner (Figure 40B). Again, the Zn(II) complex was ineffective, with only ~17% 

cell growth inhibition at 50 µM (Figure 40B). Thus, GaIIIDiIBPEN suppresses cellular proteasome 

activity, as well as cellular viability in PC-3 prostate cancer cells. 
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Figure 40. Tethered Ga(III) inhibits cellular proteasome 

activity and cell proliferation. PC-3 cells were treated with 

increasing concentrations of GaIIIDiIBPEN or ZnIIDiIBPEN for 24 

h followed by measurement of A) CT-like activity and B) cell 

viability. 
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Tethered Ga(III) but not Zn(II) induces apoptosis in PC-3 cells 

To further confirm the proteasomal inhibition induced by GaIIIDiIBPEN, PC-3 cells were 

treated with increasing concentrations of GaIIIDiIBPEN or ZnIIDiIBPEN for 24 hours, followed 

by Western blot analysis. A dose-dependent accumulation of ubiquitinated proteins following 

treatment with the Ga(III) complex was observed (Figure 41A).  Additionally, apoptosis-

associated PARP cleavage and cellular morphological changes were observed in these cells. A 

decrease in full length PARP is obvious at 30µM GaIIIDiIBPEN, and a cleavage fragment is visible 

at 50 µM; while no PARP cleavage occurred following ZnIIDiIBPEN treatment (Figure 41A). 

Cellular morphological changes confirm cell death caused by the Ga(III), but not Zn(II), complex. 

As shown in Figure 41B, no changes in cellular shape occur at 40 or 50 µM ZnIIDiIBPEN 

treatment, but cells treated with GaIIIDiIBPEN display distinct apoptosis-related changes, 

including becoming round and detached, at only 20 µM treatment (Figure 41B). Therefore, 

GaIIIDiIBPEN is a potent apoptosis-inducer in PC-3 prostate cancer cells.  

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

118 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41. Tethered Ga(III) inhibits cellular proteasome activity and induces apoptosis. PC-3 

cells were treated with increasing concentrations of GaIIIDiIBPEN or  ZnIIDiIBPEN for 24 h followed 

by A) Western blot analysis and B) observation of apoptosis-associated morphological changes. 
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Tethered Ga(III) and Zn(II) complexes have no effect proteasome activity in normal, immortalized 

CRL2221 cell extracts 

 

To evaluate the toxicity of these complexes in non-cancer cells, human normal, 

immortalized CRL2221 prostate cell extracts were incubated with increasing doses of 

GaIIIDiIBPEN or ZnIIDiIBPEN, up to 50µM, for 8 hours, followed by measurement of proteasomal 

CT-like activity. The fluorogenic assay revealed that neither complex is able to induce proteasome 

inhibition, as 50µM GaIIIDiIBPEN resulted in only ~20% inhibition (Figure 42). The lack of 

proteasome inhibition by these compounds in normal, immortalized cell extracts suggests that the 

effects of GaIIIDiIBPEN are specific to tumor cells. 
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Figure 42. Tethered Ga(III) and Zn(II) complexes have no effect on 

proteasome activity in CRL2221 cells. CRL2221 cell extracts were treated 

with increasing concentrations of GaIIIDiIBPEN or ZnIIDiIBPEN for 8 h, 

followed by measurement of CT-like activity. 
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DISCUSSION 

Gallium, unlike zinc, has no history of clinical use or known biological function, but can 

interact with proteins and play a role in some cellular processes. Gallium is primarily used for 

diagnostic purposes (Chitambar 2010) and gallium nitrate is used to treat hypercalcemia. 

Additionally, some gallium complexes have entered clinical trials toward the goal of optimizing 

their pharmacokinetics (Galanski et al. 2003; Jakupec and Keppler 2004; Rudnev, et al. 2006). 

Previous reports have also shown that gallium complexes are able to inhibit cellular proliferation 

in cisplatin-resistant neuroblastoma cells (Shakya et al. 2006), as well as inhibiting the proteasome 

and inducing cell death in prostate cancer cells (Chen et al. 2007b).  

The previous success of gallium-based compounds led to the synthesis of second-

generation gallium complexes, which proved more potent against tumor proteasome activity and 

cell growth than the original complexes (Chen et al. 2007b). The potency of these 1:2 metal:ligand 

complexes was somewhat unexpected, but is likely due to the 3+ oxidation state of gallium, 

considering the redox inactive 2+ zinc complex was ineffective. Previous studies indicated that a 

1:1 metal:ligand ratio is the active species, and it is probable that the intracellular reduction of the 

Ga(III) species within the tumor microenvironment encourages ligand dissociation into the active 

1:1 metal:ligand complex (Tomco et al. 2011). In addition to its oxidation state, the zinc(II) 

complex may be inactive due to its bioavailability and promiscuity within the cell, causing it to be 

diverted prior to reaching the proteasome. Taken together, the results presented in this chapter 

further suggest that gallium-based complexes have the potential to be used as cancer 

chemotherapeutic agents. 
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4.5 Nitroxoline Inhibits the Tumor Proteasome and Suppresses Tumor Growth 

RESULTS 

Nitroxoline-copper complex inhibits purified 20S proteasome activity more potently than 

clioquinol-copper  

 

Due to the structural similarities between clioquinol (CQ) and nitroxoline (5NHQ) (Figure 

23), it is likely that 5NHQ is able to complex with copper in a manner similar to CQ (Chen et al. 

2007a; Di Vaira et al. 2004). To test this, 5NHQ or CQ (as a control) were mixed with CuCl2 at 

1:1 molar ratios. As expected, a dramatic color change was observed (Figure 40A), indicating the 

formation of a 5NHQ-copper complex. Interestingly, the observed color change was much more 

dramatic than that observed when CQ was mixed with CuCl2, suggesting that 5NHQ may be a 

stronger copper chelator than CQ.   

Next, because copper chelators like CQ, in complex with copper, have been shown to be 

potent proteasome inhibitors in vitro (Chen et al. 2007a), the proteasome-inhibitory ability of 

5NHQ was investigated in the presence and absence of copper. Indeed, when purified human 20S 

proteasome was incubated with CQ, 5NHQ, CuCl2 or the CQ-Cu and 5NHQ-Cu complexes, 

proteasome inhibition occurred in a dose-dependent manner, most significantly in the copper-

containing complexes. Both CuCl2 and 5NHQ alone inhibited about 60% activity at the high 

concentration of 20 µM, whereas the 5NHQ-Cu complex had an IC50 of approximately 3.75 µM 

(Figure 42B), indicating that 5NHQ is a potent proteasome inhibitor when complexed with copper. 

For comparison, CQ alone only inhibited about 5% CT-like activity at 20 µM, and the CQ-Cu 

complex had an IC50 close to 20 µM. Thus, 5NHQ in complex with copper is a more potent 

inhibitor of purified proteasome than CQ-Cu. 
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Figure 43. Nitroxoline complexes with copper and inhibits purified 20S 

proteasome. A) CQ or 5NHQ was mixed with CuCl2 in a 1:1 ratio (1, 2 and 

5 mM). Color change to deep yellow indicates complex formation. B) 

Purified proteasome was incubated with increasing concentrations of 

5NHQ-Cu, CQ-Cu or controls for 2h followed by measurement of CT-like 

activity. 
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5NHQ-Cu complex inhibits proteasome activity and induces apoptosis in human leukemia cells 

To determine if the 5NHQ-Cu complex was active against the 26S proteasome in cultured 

leukemia cells, human K562 cells were treated for 24 hours with 1-5 µM 5NHQ-Cu, or with 1-5 

µM CQ-Cu and 5 µM 5NHQ, CQ or CuCl2 as controls. Following treatment, proteasomal CT-like 

activity was measured using the fluorometric activity assay (Figure 44A). The results indicate that 

the 5NHQ-Cu complex is a potent inhibitor of intact 26S proteasome in K562 leukemia cells, with 

80% inhibition at 5µM, whereas CQ-Cu, as well as all other controls, had little to no effect on CT-

like activity in intact K562 cells (Figure 44A).  

Inhibition of CT-like activity has been shown to be associated with suppression of cellular 

growth and induction of apoptosis in malignant cells (An et al. 1998; Lopes et al. 1997), so the 

effects of 5NHQ-Cu on cell death were also measured. First, K562 cells were treated with 

increasing concentrations (2.5-10 µM) of 5NHQ-Cu or 10 µM 5NHQ alone (or DMSO, 10 µM 

CuCl2 or CQ, and increasing concentrations of CQ-Cu as controls), for 24 hours, followed by 

analysis by Trypan Blue assay (Figure 44B). The 5NHQ-Cu complex induced cell death in 

approximately 80% of cells at a concentration of 10 µM, whereas 5NHQ induced only 10% cell 

death at 10 µM. In comparison, all other controls caused less than 10% cell death at all 

concentrations tested (Figure 44). Finally, PARP cleavage was also observed following treatment 

with 5 and 10 µM 5NHQ-Cu only (Figure 44C), with no cleavage observed following treatment 

with any of the controls.   
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Figure 44. 5NHQ-Cu inhibits proteasome activity and induces apoptosis in human leukemia 

cells. K562 cells were treated with increasing concentrations of 5NHQ-Cu, CQ-Cu, or other controls, 

for 24 h followed by measurement of A) CT-like activity, B) cell death via Trypan blue exclusion 

assay and C) Western blot analysis.  

 



www.manaraa.com

126 

 

 
 

5NHQ-Cu complex suppresses cell proliferation and proteasome activity and causes apoptosis in 

human prostate and breast cancer cells 

 

To confirm that the effects of 5NHQ-Cu observed in K562 cells are not cell-line specific, 

PC-3 prostate cancer (Figure 45) and MDA-MB-231 breast cancer (Figure 46) cells were treated 

with 1-10 µM 5NHQ-Cu, 10-20 µM 5NHQ, or other controls (DMSO, 10-20 µM CuCl2 or CQ, 

and 1-10 µM CQ-Cu) for 0-24 hours, followed by measurement of CT-like activity by both the 

fluorometric assay and Western blot analysis. Inhibition of 90% at only 5 µM 5NHQ-Cu and nearly 

100% at 10 µM was observed in PC-3 cells (Figure 45A) and approximately 95% at 5 and 10 µM 

in MDA-MB-231 cells (Figure 46A). In contrast, 5NHQ alone inhibited only about 60% activity 

at 10 and 20 µM in both cell lines (Figures 45A and 46A, respectively). Similarly, all other control 

treatments resulted in approximately 60% inhibition in PC-3 cells (Figure 45A), and 10-20% 

(CuCl2 and 5 and 10 µM CQ-Cu) or 60% (CQ) inhibition in MDA-MB-231 cells (Figure 46A). 

Consistently, Western blot analysis revealed accumulation of ubiquitinated proteins in MDA-MB-

231 cells (Figure 46C), following treatment with 5NHQ-Cu, confirming its cellular proteasome 

inhibitory ability. 
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Figure 45. 5NHQ-Cu suppresses cell proliferation and proteasome activity and induces 

apoptosis in prostate cancer cells. PC-3 prostate cancer cells were treated with increasing 

concentrations of 5NHQ-Cu, CQ-Cu, or other controls, for 24 h followed by measurement of A) 

CT-like activity, B) cell viability via MTT, C) observation of apoptosis-associated morphological 

changes. 
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To verify the cell death-inducing abilities of 5NHQ-Cu in these cell lines, suppression of 

cell growth was first measured by MTT assay.  PC-3 and MDA-MB-231 cells were treated with 

increasing concentrations of 5NHQ-Cu, 10 µM 5NHQ alone, or other controls (DMSO, 10 µM 

CuCl2 or CQ, and increasing concentrations of CQ-Cu), for 24 hours, followed by analysis by 

MTT (Figures 45B and 46B). The 5NHQ-Cu complex suppressed cell proliferation by about 85% 

and nearly 100% at 5 µM in PC-3 (Figure 45B) and MDA-MB-231 (Figure 46B) cells, 

respectively. 5NHQ alone (10 µM) suppressed only about 20% PC-3 and 40% MDA-MB-231 cell 

growth. In comparison, CQ-Cu (5 µM) inhibited approximately 40% and less than 10% cell growth 

in PC-3 (Figure 45B) and MDA-MB-231 (Figure 46B) cells, respectively. Finally, PARP cleavage 

was observed following treatment with 5NHQ-Cu in MDA-MB-231 cells  (Figure 46C) and classic 

apoptotic morphological changes, including becoming spherical and detaching from the culture 

surface, were observed in both PC-3 and MDA-MB-231 cells (Figures 45C and 46D).  
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Figure 46. 5NHQ-Cu inhibits cell proliferation and proteasome activity and causes apoptosis 

in breast cancer cells. MDA-MB-231 breast cancer cells were treated with increasing 

concentrations of 5NHQ-Cu, CQ-Cu, or other controls, for 24 h followed by measurement of A) 

CT-like activity, B) cell viability via MTT, C) Western blot analysis and D) observation of 

morphological changes.  
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5NHQ suppresses tumor growth in vivo 

The in vitro data presented above reveal proteasome inhibition as a new mechanism for 

5NHQ-Cu induced cell death in cultured leukemia, prostate and breast cancer cells. It has been 

shown that treatment with copper chelators like tetrathiomolybdate, and clioquinol inhibit tumor 

growth in breast, lung and prostate xenograft models (Chen et al. 2007a; Pan et al. 2002; van 

Golen, et al. 2002). This tumor growth inhibition is likely due to the reportedly high copper levels 

in various tumors (Habib et al. 1980; Huang, et al. 1999; Nayak et al. 2003; Rizk and Sky-Peck 

1984; Turecky et al. 1984). 

To determine if 5NHQ alone could suppress tumor growth in vivo, MDA-MB-231 cells 

were implanted subcutaneously in female athymic nude mice (n=12). Upon tumor initiation, mice 

were randomly divided into three groups (n=4/group) and treated daily with DMSO, CQ or 5NHQ 

(10 mg/kg/day) for 29 days or until tumors reached approximately 1800 mm3. Inhibition of 65% 

in tumor growth was observed in 5NHQ-treated mice (Figure 47), compared to vehicle control. In 

contrast, tumor growth was only inhibited by about 35% in mice treated with CQ (Figure 47). 

Additionally, tumors from 5NHQ-treated mice weighed 80% less than vehicle control tumors 

(Figure 47, Inset).  Taken together, these results are consistent with those observed in vitro and 

confirm that 5NHQ in complex with copper is a potent inhibitor of the proteasome and inducer of 

apoptosis.  
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Figure 47. 5NHQ suppresses tumor growth in vivo. Female athymic nude 

mice bearing MDA-MB-231 xenografts were treated with 10 mg/kg/d 

5NHQ, CQ or solvent control for 29 days or until tumors reached 1800mm3. 

Tumor volumes were measured every other day and tumors were weighed 

at the conclusion of the experiment. *Statistics were not performed due to 

the small sample size. 
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DISCUSSION 

Several studies have reported high levels of copper in various tumors, including brain, 

breast, colon, lung and prostate (Habib et al. 1980; Huang et al. 1999; Nayak et al. 2003; Rizk and 

Sky-Peck 1984; Turecky et al. 1984). Additionally, the importance of copper to tumor 

angiogenesis (Brem 1999; Brewer 2001) makes the use of copper chelators a promising strategy. 

Indeed, several organic copper complexes, including clioquinol-copper, have been shown to 

possess potent tumor proteasome inhibitory activity (Chen et al. 2007a; Daniel et al. 2005; Daniel 

et al. 2004; Zhai et al. 2010).    

The structural similarities between nitroxoline (5NHQ) and clioquinol (CQ) led to the 

hypothesis that 5NHQ, in complex with copper, like CQ possesses proteasome inhibitory activity 

(Chen et al. 2007a). 5NHQ is also a potent chelator of metals like copper and magnesium (Pelletier 

et al. 1994), which strengthens this hypothesis. The data presented in this chapter indicate that 

5NHQ-Cu is, in fact, a more potent proteasome inhibitor and tumor growth suppressor than CQ-

Cu. 5NHQ-Cu was tested in human leukemia, prostate and breast cancer cells and potently 

inhibited the cellular proteasome, associated with significant cell death. Importantly, 5NHQ alone 

also suppressed tumor growth in a MDA-MB-231 mouse xenograft model. Thus, 5NHQ interacts 

with intracellular copper to form an active proteasome inhibitory complex, which is able to induce 

apoptosis in tumor cells and tissues. Together these results suggest that targeting intracellular 

copper is an effective means of proteasome inhibition, and indicate that copper chelators like 

5NHQ could be used successfully in cancer prevention or treatment. 
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CHAPTER 5 

 

METAL CHELATORS DESTABILIZE THE E3 LIGASE X-LINKED 

INHIBITOR OF APOPTOSIS (XIAP): NOVEL POLYPYRIDYL 

CHELATORS DEPLETE CELLULAR ZINC AND DESTABILIZE THE X-

LINKED INHIBITOR OF APOPSOSIS PROTEIN (XIAP) PRIOR TO 

INDUCTION OF APOPTOSIS IN HUMAN PROSTATE AND BREAST 

CANCER CELLS 
 

Adapted from published material in J Cell Biochem. 2012 Aug;113(8):2567-75. 

 

X-linked inhibitor of apoptosis protein, XIAP, inhibits the initiation and execution phases 

of the apoptotic pathway. XIAP is the most potent member of the inhibitor of apoptosis protein 

(IAP) family of the endogenous caspase inhibitors. Therefore, targeting XIAP may be a promising 

strategy for the treatment of apoptosis-resistant malignancies. In this chapter, the relationships of 

chemical structures of several novel ligands to their zinc-binding ability and effects on the 

molecular target XIAP and tumor cell death-inducing activity were studied systematically. 

Treatment of PC-3 prostate cancer and MDA-MB-231 breast cancer cells with these membrane-

permeable zinc-chelators with different zinc affinities results in varying degrees of XIAP 

depletion. Following degradation of XIAP protein, apoptosis-related caspase activation and 

cellular morphological changes were also observed upon treatment with strong zinc-chelators 

N4Py and BnTPEN. Addition of zinc has a full protective effect on cells treated with these 

chelators, while iron addition has only partial protection that can, however, be further increased to 

a comparable level of protection as zinc by inhibition of ROS generation, indicating that cell death 

effects mediated by iron- but not zinc-complexes involve redox cycling. These findings suggest 

that strong zinc-chelating agents may be useful in the treatment of apoptosis-resistant human 

cancers. 
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RESULTS 

Structures and Zn binding affinity of polypyridyl ligands determined under cell-free conditions 

Several unique, cell-permeable nitrogen-containing polypyridyl ligands (Figure 48) have 

varying denticity, from three for DPA to six for TPEN. These ligands can bind to metal ions such 

as Fe, Zn or Cu to form stable metal complexes (Anderegg, et al. 1977) with different binding 

affinities. The structure-biological activity relationships of these ligands have never been 

systematically investigated. Therefore, the Zn-binding affinities of these ligands in solution were 

determined and compared: the rank of their Zn-binding affinities under cell-free conditions was 

TPEN > BnTPEN > N4Py > TPA > DPA (Figure 48, Insert). The relationship of the Zn-binding 

strengths and biological activities of these ligands was then investigated in intact human cancer 

cells. 
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Figure 48. Structures and Zn-binding affinities (ZnII Kd) of tested chelators. 
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Inhibition of prostate cancer cell viability and induction of apoptosis by the tested polypyridyl 

chelators are associated with depletion of XIAP 

 

XIAP uses Zn(II) ion as a cofactor and, therefore, the cellular Zn-binding ability of these 

ligands can be exploited by measuring effects on XIAP protein levels. Thus, whether these Zn 

chelators could remove Zn from XIAP, causing its degradation and leading to cell death and 

growth inhibition, and whether the rank of biological activities of these ligands in cultured cancer 

cells matches that found in solution was investigated. TPEN and TPA are known to be cell 

permeable (Ghosh, et al. 2010; Hashemi, et al. 2007) and because N4Py and BnTPEN are 

structurally and functionally similar to TPEN (vide infra), they should be cell permeable as well. 

To determine the effects of these chelators on cell viability, human prostate cancer PC-3 

cells were treated with each of the selected agents at 1, 2.5 or 5 µM or with DMSO, as a solvent 

control, for 24 hours, followed by measurement via MTT assay (Figure 49A). Cells treated with 

TPEN, BnTPEN, N4Py and TPA at 5 µM exhibited dramatically decreased cell viability (about 

100%, 100%, 90% and 90%, respectively). When cells were treated with 2.5 µM TPEN, BnTPEN, 

N4Py and TPA, cell viability was reduced by about 70%, 90%, 20% and 15%, respectively (Figure 

49A), which roughly matched the rank of their Zn-binding strengths in solution (Figure 48). The 

slight differences in relative potency of these ligands may be due to differences in stability and 

permeability in solution compared with in cells. None of the ligands exhibited any inhibitory effect 

at 1 µM (Figure 49A). Additionally, treatment with DPA even at 5 µM resulted in no inhibition of 

cellular viability (Figure 49A). These data suggest that the ability of these ligands to inhibit cellular 

viability corresponds with their zinc-binding ability in solution. 

Additionally, to determine the effects of chelators on cancer cell death, Western blot 

analysis was performed on PC-3 cell lysates after 16 hour treatment with 2.5 or 5 µM of each 

chelator. Apoptosis-associated PARP cleavage was observed in cells treated for 16 hours with 
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TPEN, BnTPEN, N4Py and TPA at 5 µM (Figure 49B). Less dramatic PARP cleavage was 

observed following 2.5 µM treatment (Figure 49B). Again, some slight changes in relative potency 

of these ligands under cellular conditions compared to in solution were observed. Importantly, 

depletion of XIAP, associated with induction of apoptosis, was observed in cells treated with 2.5 

µM TPEN, BnTPEN, N4Py and TPA, and XIAP was completely undetectable when these ligands 

were used at 5 µM (Figure 49B), suggesting that XIAP depletion is associated with inhibition of 

cell proliferation and induction of PARP cleavage, and these effects are, at least partially dependent 

on Zn-binding affinity. Again, DPA treatment generated neither PARP cleavage nor XIAP 

degradation (Figure 49B). 
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Figure 49. Polypyridyl chelators inhibit cell proliferation and induce 

apoptosis in prostate cancer cells associated with XIAP depletion and 

dependent on Zn-binding. A) MTT assay (24 h) B) Western blot analysis (16 h). 

The concentration of each compound used was 2.5 or 5 µM, as indicated. DM = 

DMSO treatment. 
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Inhibition of cell viability and induction of apoptosis associated with XIAP depletion are also 

observed in human breast cancer cells 

 

Similar effects were also observed in the breast cancer cell line, MDA-MB-231. MDA-

MB-231 cells were treated with the chelators at 10 and 15 µM or with the solvent DMSO for 48 

hours, followed by measurement of cellular viability by MTT assay. TPA, TPEN, BnTPEN and 

N4Py treatment resulted in inhibition of cellular viability, while DPA was again the least potent 

chelator, causing only about 50% inhibition at 15 µM (Figure 50A). However, the chelators (TPA, 

TPEN, BnTPEN and N4Py) were much less potent in these cells, reaching a maximum of only 70–

85% inhibition at 15 µM (Figure 50A), than in PC-3 cells, where a maximum inhibition of nearly 

100% was reached after treatment with only 5 µM (Figure 49A), which may suggest that this 

strategy may be more useful in treating prostate cancer than breast cancer. 

Also similar to the results observed in PC-3 cells, Western blot analysis showed that 3 hour 

treatment with 10 µM TPA, TPEN, BnTPEN and N4Py induced depletion of full-length XIAP, 

with almost complete disappearance as a result of BnTPEN treatment (Figure 50B). Following 

XIAP depletion after 3 hour treatment, caspase-3 activation was detected after treatment with 10 

µM TPA, TPEN, BnTPEN and N4Py for 24 hours, evident by cleavage of caspase-3 into its active 

form (17 kDa) (Figure 50B) and induction of caspase-3 enzymatic activity (Figure 50C). Because 

an antibody specific for the cleaved caspase-3 fragment (17 kD) was used, no full-length caspase-

3 bands (36 kD) were detected. Maximum caspase activation occurred after 24 hour treatment with 

TPA, TPEN, BnTPEN and N4Py (approximately, 12-, 7-, 16- and 13-fold, respectively). This was 

also accompanied by decreased levels of full-length PARP and/or the appearance of cleaved PARP 

after 24 hour treatment (Figures 50B). Little to no PARP cleavage was observed after 3 hours 

(Figure 50B), suggesting that apoptosis occurs after XIAP depletion. In contrast, treatment with 

DPA induced neither XIAP depletion at 3 hours nor apoptosis at 24 hours (Figure 50B, C). 
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Figure 50. Polypyridyl chelators inhibit cell proliferation and induce apoptosis in 

breast cancer cells associated with XIAP depletion and dependent on Zn-binding. A) 

MTT assay (48 h) B) Western blot analysis (3 h and 24 h) C) Caspase-3 activity assay (24 

h). The concentrations of each compound used were 10 (A-C) or 15 µM (A). DM = DMSO 

treatment. 
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Addition of Zn and Fe has differential effects on BnTPEN- and N4Py-induced cell viability 

inhibition and apoptosis 

 

To determine the effect of metal addition on BnTPEN- and N4Py-mediated inhibition of 

cell viability, PC-3 cells were treated with each chelator at 5 µM in the absence or presence of 

FeCl2 or ZnCl2 at various concentrations. Cell viability was subsequently measured by MTT assay 

(Figure 51A). Addition of ZnCl2 at concentrations as low as 0.5 (data not shown) to 10 µM 

reversed 5 µM N4Py-mediated cell growth inhibition, but FeCl2, even at concentrations of 5 and 

10 µM exhibited little rescue of cellular viability (Figure 51A). Also, addition of ZnCl2 at 

concentrations of 2.5 (data not shown) to 10 µM, but not FeCl2 even at concentrations as high as 

10 µM, reversed inhibition of cell growth by BnTPEN (Figure 51B). 

Similarly, ZnCl2 completely, while FeCl2 partially, reversed PARP cleavage induced by 

treatment with N4Py and BnTPEN, as found by Western blot analysis (Figure 51C). XIAP 

depletion at 3 hours by N4Py was reversed by both FeCl2 and ZnCl2, while XIAP depletion by 

BnTPEN was reversed completely with ZnCl2, but only partially by FeCl2 (Figure 51C). Similarly, 

the morphological changes induced by both ligands were reversible only by ZnCl2 and not FeCl2 

(Figure 51D). Although FeCl2 partially reversed PARP cleavage and XIAP depletion induced by 

both ligands, FeCl2 addition did not prevent cells from undergoing cell death (Figure 51D), 

consistent with its failure to rescue cells from growth inhibition mediated by the ligands (Figure 

51A), which may be explained by the ligand binding to Fe and producing oxidative stress. The 

ability of FeCl2 to rescue XIAP depletion by N4Py, but only partially rescue that induced by 

BnTPEN is concordant with N4Py binding Fe rather than Zn. Inhibition of XIAP degradation upon 

FeCl2 addition may partially contribute to decreased apoptosis (Figure 51C). 
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Figure 51.  Addition of Zn and Fe has differential effects on BnTPEN- and N4Py-induced cell 

viability inhibition and apoptosis. A) MTT: Zn but not Fe reverses inhibition of cell viability by N4Py. 

B) MTT: Only Zn reverses effect of BnTPEN. Concentrations and time points used: Fe and Zn alone = 

10 µM, N4Py and BnTPEN alone and in combination with metals = 5 µM, 24 h treatment. C) Western 

blot: Fe and Zn have different protective effects on N4Py- and BnTPEN-mediated XIAP depletion. Fe 

partially, while Zn completely, rescues N4Py- and BnTPEN-induced PARP cleavage. D) Zn, but not 

Fe, completely reverses N4Py- and BnTPEN-associated morphological changes. DM = DMSO 

treatment.  
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Pre-treatment with Zn, but not Fe, reverses the effects of both N4Py and BnTPEN 

To determine if the time at which metal is added affects the reversal of chelator-mediated 

effects, PC-3 cells were first treated with 100 µM FeCl2 or ZnCl2 for 48 hours, followed by co-

treatment with 10 µM N4Py or BnTPEN for an additional 3 or 20 hours. Cell viability was then 

assessed via MTT assay (Figure 52A). Cells pre-treated with ZnCl2 displayed increased viability 

compared to cells treated with either N4Py or BnTPEN alone (Figure 52A). In contrast, the 

inhibition of cell growth by N4Py and BnTPEN was sustained in cells pre-treated with FeCl2 

(Figure 52A). Western blot analysis revealed that apoptosis-associated PARP cleavage mediated 

by N4Py and BnTPEN could also be reversed by ZnCl2 but not FeCl2 (Figure 52B). Importantly, 

pre-treatment with ZnCl2, but not FeCl2 also had a protective effect against XIAP depletion and 

apoptosis-associated morphological changes mediated by both N4Py and BnTPEN (Figure 52B, 

C). 
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Figure 52. Effects of N4Py and BnTPEN in PC-3 cells are reversed by pre-treatment with Zn. A) MTT 

assay B) Western blot assay C) Morphological changes. Treatment with iron alone (data not shown) resulted 

in similar effects as that with zinc alone. Concentrations and time points used: Fe and Zn = 100 µM, N4Py 

and BnTPEN = 10 µM. 48 h metal pre-treatment, followed by 3 h or 20 h co-treatment with ligand. DM = 

DMSO treatment. 
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Treatment with N-acetylcysteine (NAC) reverses N4Py-mediated effects 

To elucidate the possible mechanism by which FeCl2 is only able to partially reverse N4Py-

mediated effects as compared to full reversal by ZnCl2, PC-3 cells were treated with 5 µM N4Py, 

10 µM FeCl2 or ZnCl2, and 250 µM N-acetylcysteine (NAC). NAC is a scavenger of reactive 

oxygen species (Aruoma, et al. 1989), which may be generated in cells treated with FeCl2, which 

can redox cycle, but not in cells treated with ZnCl2. When cell viability was measured by MTT 

assay, it was observed that treatment with NAC and FeCl2 almost completely reversed the effects 

of N4Py, to a level comparable to those observed in cells treated with N4Py and ZnCl2 (Figure 

53A). 

To further validate the effects of NAC addition, Western blot analysis was performed on 

PC-3 cell lysates after treatment with N4Py, ZnCl2 or FeCl2 and NAC. Interestingly, XIAP 

depletion by N4Py was partially reversed by NAC treatment, but PARP cleavage was not further 

reversed (Figure 53B). The partial reversal of XIAP depletion may be due to the tighter binding of 

N4Py to Zn compared to Fe (77 times stronger), suggesting that Fe-N4Py may be able to strip Zn 

from XIAP to form a more potent cell death-inducing Zn-N4Py complex. Similarly, cell death 

associated morphological changes induced by N4Py were also partially reversed by addition of 

NAC (Figure 53C). These results suggest that some Fe/N4Py-mediated cell death effects may be 

due to ROS generated through Fe-redox cycling. 
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Figure 53. Effects of N4Py are reversible by treatment with NAC. A) MTT assay B) Western blot 

analysis C) Morphological changes. Concentrations and time points used: NAC = 250 µM, Fe and Zn = 

10 µM, N4Py = 5 µM, 20 h treatment. NAC = N-Acetylcysteine; DM = DMSO treatment. 
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DISCUSSION 

Zinc is a known enzyme inhibitor with a well-documented catalytic role in 

metalloenzymes, and the removal of zinc from inhibitory enzymatic sites leads to increased 

enzyme activity (Maret, et al. 1999). However, in some RING-finger containing proteins, such as 

XIAP, it is well documented that zinc is important for structural stability of these enzymes, but the 

mechanism by which Zn-chelators induce XIAP depletion is not well-defined. One proposed 

mechanism suggests that depletion of full length XIAP may be a marker for cell death rather than 

a protective mechanism (Deveraux, et al. 1999; Johnson, et al. 2000; Levkau, et al. 2001). 

Therefore, this mechanism, as well as others by which these zinc-chelators induce apoptosis must 

be further investigated. In this chapter, a series of novel ligands with various zinc-binding abilities 

was used to investigate this important mechanism. It is probable that removal of zinc from the 

BIR-2 and -3 motifs by novel metal chelators like BnTPEN and N4Py destabilizes XIAP and 

causes breakdown of the enzyme, similar to the previously reported action of TPEN (Makhov, et 

al. 2008). Upon depletion of XIAP, caspases are consequently activated and cells undergo 

apoptosis (Figure 54). 
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Figure 54. Proposed mechanism by which Zn-chelators BnTPEN and N4Py 

induce cellular death. Zn-chelators with high Zn-binding affinity remove Zn from 

XIAP, causing degradation of the enzyme and ultimately leading to apoptotic cell 

death. Furthermore, the Fe-binding ability of these compounds may also contribute to 

induction of cell death via an XIAP-independent pathway involving Fe redox cycling.  
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These chelators may also bind intracellular iron, albeit with a lower affinity, but the Fe-

binding ability of these compounds may also contribute to induction of cell death via an XIAP-

independent pathway involving Fe redox cycling (Figure 54). The interaction of these chelators 

with intracellular Fe and Fe-containing proteins must be examined. Importantly, other metals such 

as copper and cadmium may also bind to XIAP and induce conformational changes which are 

associated with destabilization of the enzyme (Mufti, et al. 2006), suggesting that further 

exploration into possible interactions of these metals with the tested chelators is also necessary. 

Additionally, while other members of the IAP family contain Zn-binding RING-finger motifs, less 

is known about the effect of metal chelation on these enzymes. This is a relationship that must be 

further elucidated. Finally, the mechanisms of action of these ligands found in cultured tumor cells 

should be confirmed in vivo in the future. 

Because cancer cells have been shown to express high levels of XIAP, this may be a 

potential target for emerging therapeutics and while some success has been observed after 

treatment with small molecule XIAP inhibitors, recent studies have suggested a possibility for 

development of resistance to these inhibitors (Schimmer, et al. 2006). More recent reports also 

suggest important roles for XIAP in non-apoptotic pathways such as NF-κB, MAPK and the 

ubiquitin-proteasome pathway, which may have greater than previously anticipated effects on 

normal cellular processes (Srinivasula and Ashwell 2008; Yang, et al. 2009). Therefore, the use of 

strong Zn-chelating compounds that induce depletion of XIAP may be a very promising strategy 

for the treatment of human malignancies. 
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The ubiquitin-proteasome pathway is crucial to normal cellular function, and as such, has 

been extensively investigated as a potential target for cancer therapeutics. Many compounds have 

been tested for their proteasome inhibitory ability, including various small peptide aldehydes, and, 

following the success of cisplatin, several metal-containing complexes. The efficacy of these 

compounds in preclinical studies ultimately resulted in the development and approval of the first-

in-class proteasome inhibitor bortezomib, the use of which, unfortunately, has been hindered by 

toxicity and resistance. These limitations have led to a massive push toward designing and 

developing new, less toxic proteasome inhibitors for clinical use.     

The discovery more than twenty years ago that the heme-synthesis enzyme δ-

aminolevulinic acid dehydratase (ALAD) possesses proteasome inhibitory activity revealed 

another potential approach for targeting the UPP in cancer. However, this discovery predated the 

initial investigation into proteasome inhibition as a therapeutic strategy, so a surprising lack of 

research into the relationship between ALAD and the proteasome exists. Therefore, further 

investigation into this relationship is necessary. 
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 Taken together, these observations validate the proteasome as a viable chemotherapeutic 

target. Additionally, novel agents that target not only the proteasomal core, but also other factors 

involved in the pathway, including E3s like XIAP which are also critical components of the 

apoptotic cascade, as well as potential endogenous inhibitors like ALAD. The data presented in 

this dissertation suggest a novel interaction between the 20S proteasomal core and ALAD, which 

results in proteasome inhibition and tumor cell growth suppression, suggesting that targeting this 

relationship is a promising approach for cancer treatment. Additionally, a series of new metal-

based complexes with various metal centers, including cobalt, gold, gallium and the copper 

chelator nitroxoline were shown to be potent inhibitors of the proteasome in several cancer cell 

lines and tumor xenograft models. Furthermore, proteasome inhibition was also revealed as a 

secondary mechanism of cell death for mercury-containing species. Finally, zinc chelation was 

explored as a strategy for inducing apoptosis via degradation of the E3 ligase X-linked inhibitor 

of apoptosis (XIAP). Collectively, these data confirm the potential of the UPP as an anticancer 

target and substantiate several factors within the pathway as viable druggable targets. 
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